我正在尝试通过应用groupBy在pySpark中的数据框上创建的组中找到共同的值。
例如,数据如下:
+--------+---------+---------+
|PlayerID|PitcherID|ThrowHand|
+--------+---------+---------+
|10000598| 10000104| R|
|10000908| 10000104| R|
|10000489| 10000104| R|
|10000734| 10000104| R|
|10006568| 10000104| R|
|10000125| 10000895| L|
|10000133| 10000895| L|
|10006354| 10000895| L|
|10000127| 10000895| L|
|10000121| 10000895| L|
申请后:
df.groupBy('PlayerID').pivot('ThrowHand').agg(F.count('ThrowHand')).drop('null').show(10)
我得到类似:-
+--------+----+---+
|PlayerID| L | R|
+--------+----+---+
|10000591| 11| 43|
|10000172| 22|101|
|10000989| 05| 19|
|10000454| 05| 17|
|10000723| 11| 33|
|10001989| 11| 38|
|10005243| 20| 60|
|10003366| 11| 26|
|10006058| 02| 09|
+--------+----+---+
在上面的L和R的计数中,有某种方式我可以得到'PitcherID'的通用值。
我的意思是,对于PlayerID = 10000591,我有11个PitcherID(其中ThrowHand为L)和43 PitcherID(其中ThrowHand为43)。在这11个和43个投手中,有一些投手很常见。
有什么办法可以获取这些通用的PitcherID?
答案 0 :(得分:1)
首先应为每个 throwhand 获取
的 pitcherIds 集合。import pyspark.sql.functions as F
#collect set of pitchers in addition to count of ThrowHand
df = df.groupBy('PlayerID').pivot('ThrowHand').agg(F.count('ThrowHand').alias('count'), F.collect_set('PitcherID').alias('PitcherID')).drop('null')
这应该给您dataframe
作为
root
|-- PlayerID: string (nullable = true)
|-- L_count: long (nullable = false)
|-- L_PitcherID: array (nullable = true)
| |-- element: string (containsNull = true)
|-- R_count: long (nullable = false)
|-- R_PitcherID: array (nullable = true)
| |-- element: string (containsNull = true)
然后编写一个udf
函数以获取常见的pitcherID
作为
#columns with pitcherid and count
pitcherColumns = [x for x in df.columns if 'PitcherID' in x]
countColumns = [x for x in df.columns if 'count' in x]
#udf function to find the common pitcher between the collected pitchers
@F.udf(T.ArrayType(T.StringType()))
def commonFindingUdf(*pitcherCols):
common = pitcherCols[0]
for pitcher in pitcherCols[1:]:
common = set(common).intersection(pitcher)
return [x for x in common]
#calling the udf function and selecting the required columns
df.select(F.col('PlayerID'), commonFindingUdf(*[col(x) for x in pitcherColumns]).alias('common_PitcherID'), *countColumns)
这应该给您最终的dataframe
为
root
|-- PlayerID: string (nullable = true)
|-- common_PitcherID: array (nullable = true)
| |-- element: string (containsNull = true)
|-- L_count: long (nullable = false)
|-- R_count: long (nullable = false)
我希望答案会有所帮助