我试图查看预测结果并使用model.predict函数打印它们,但出现错误:
ValueError: Error when checking model : the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 2 array(s), but instead got the following list of 1 arrays: [array([[array([ 0,....
我有多个输入,都是嵌入式的。当我将一个输入嵌入时,此代码以前有效。
for i in range(100):
prediction_result = model.predict(np.array([test_text[i], test_posts[i]]))
predicted_label = labels_name[np.argmax(prediction_result)]
print(text_data.iloc[i][:100], "")
print('Actual label:' + tags_test.iloc[i])
print("Predicted label: " + predicted_label + "\n")
test_text和test_posts是pad_sequences的结果。它们在数组中,test_text的形状为100,test_posts的形状为1。labels_name是标签的名称。我在第二行中有错误;
prediction_result = model.predict(np.array([test_text[i], test_posts[i]]))
错误:
/usr/local/lib/python3.6/dist-packages/keras/engine/training.py in predict(self, x, batch_size, verbose, steps)
1815 x = _standardize_input_data(x, self._feed_input_names,
1816 self._feed_input_shapes,
-> 1817 check_batch_axis=False)
1818 if self.stateful:
1819 if x[0].shape[0] > batch_size and x[0].shape[0] % batch_size != 0:
/usr/local/lib/python3.6/dist-packages/keras/engine/training.py in _standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
84 'Expected to see ' + str(len(names)) + ' array(s), '
85 'but instead got the following list of ' +
---> 86 str(len(data)) + ' arrays: ' + str(data)[:200] + '...')
87 elif len(names) > 1:
88 raise ValueError(
ValueError: Error when checking model : the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 2 array(s), but instead got the following list of 1 arrays: [array([[array([ 0, 0, ...
这似乎是一个简单的解决方案,但我找不到。感谢您的帮助。
答案 0 :(得分:0)
该模型需要两个数组,并且您要传递一个numpy数组。
prediction_result = model.predict([test_text.values[i].reshape(-1,100), test_posts.values[i].reshape(-1,1)])
删除调用numpy.array方法,您的错误将消失。
更新:
无需使用for loop
。
prediction_result = model.predict([test_text.values.reshape(-1,100), test_posts.values.reshape(-1,1)])
这可以做您想要的。预测结果现在的形状为(number rows in test_text,number of outputs)