我有一个输入大小为8且输出大小为2的模型。但是当我仅使用一个数据使用model.predict时,它会打印一个(8,2)形状的2d数组。谁能解释一下model.predict输出究竟是什么?
输出:
[[ 0.09589279 0.08555986]
[ 0.09596384 0.08550422]
[ 0.09589279 0.08555986]
[ 0.09537797 0.08605254]
[ 0.09537797 0.08605254]
[ 0.09537797 0.08605254]
[ 0.09537797 0.08605254]
[ 0.09537797 0.08605254]]
要点:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, None, 2) 16
_________________________________________________________________
lstm_1 (LSTM) (None, None, 256) 265216
_________________________________________________________________
dropout_1 (Dropout) (None, None, 256) 0
_________________________________________________________________
lstm_2 (LSTM) (None, None, 256) 525312
_________________________________________________________________
dropout_2 (Dropout) (None, None, 256) 0
_________________________________________________________________
lstm_3 (LSTM) (None, None, 256) 525312
_________________________________________________________________
dropout_3 (Dropout) (None, None, 256) 0
_________________________________________________________________
lstm_4 (LSTM) (None, None, 256) 525312
_________________________________________________________________
dropout_4 (Dropout) (None, None, 256) 0
_________________________________________________________________
lstm_5 (LSTM) (None, 256) 525312
_________________________________________________________________
dropout_5 (Dropout) (None, 256) 0
_________________________________________________________________
dense_1 (Dense) (None, 2) 514
_________________________________________________________________
activation_1 (Activation) (None, 2) 0
=================================================================
Total params: 2,366,994
Trainable params: 2,366,994
Non-trainable params: 0
_________________________________________________________________
None
答案 0 :(得分:0)
嗯,您的输入数据肯定有(number_of_sequences, timeSteps)
形状。
总结显示输出为(number_of_sequences, 2)
是完全正常的。
这意味着输入数据中有8个序列。每个序列都有一些时间步,我无法从这个摘要中知道(None
表示变量)。这些时间步长将一直存在,直到最后一个使用return_sequences=False
的LSTM层。
在摘要中:
None
=序列数None
=时间步数