我正在使用mlr包在R中进行机器学习。我正在数据集上使用cvcoxboost算法,并希望计算输出的brier得分。
这应该可行,因为[AllowAnonymous]
[HttpPost]
public JsonResult AddData(int fileDetailsId)
{
var response = new ResponseDTO();
FileDetails fileDetails = _addingDataDl.GetFileDetails(fileDetailsId);
bool hasKnowParts = false;
FileProcess fileProcess = _addingDataDl.GetFileProcess(fileDetailsId, Enumerations.ProcessType.Parsed);
try
{
Entities.User user = _userRepository.GetUserByUserName(User.Identity.Name);
if (fileDetails != null)
还会列出度量listMeasures(cvcoxboost.tsk)
。整个代码如下:
ibrier
...并且我收到错误cvcoxboost.lrn = makeLearner("surv.cv.CoxBoost")
cvcoxboost.tsk = makeSurvTask(data = data, target = c("time", "event"))
cvcoxboost.mod = train(cvcoxboost.lrn, cvcoxboost.tsk, subset = data.train)
cvcoxboost.tsk.pred = predict(cvcoxboost.mod, task = cvcoxboost.tsk, subset = data.test)
listMeasures(cvcoxboost.tsk) # "iauc.uno" "featperc" "ibrier" "timeboth" "timetrain" "timepredict" "cindex.uno" "cindex"
performance(cvcoxboost.tsk.pred, measures = mlr::cindex)
performance(cvcoxboost.tsk.pred, measures = cindex.uno, model = cvcoxboost.mod, task = cvcoxboost.tsk)
performance(cvcoxboost.tsk.pred, measures = mlr::ibrier, model = cvcoxboost.mod, task = cvcoxboost.tsk)
。
答案 0 :(得分:2)
ibrier仅适用于受pec软件包支持的某些学习者,例如randomForestSRC或cox。目前尚无足够的文档记录,但是您可以查看一下pec软件包,以了解支持哪些模型。