当尝试在训练有素的多个时间段上加载保存的权重时 使用以下代码返回网络:
import tensorflow as tf
from returnn.Config import Config
from returnn.TFNetwork import TFNetwork
for i in range(1,11):
modelFilePath = path/to/model/ + 'network.' + '%03d' % (i,)
returnnConfig = Config()
returnnConfig.load_file(path/to/configFile)
returnnTfNetwork = TFNetwork(config=path/to/configFile, train_flag=False, eval_flag=True)
returnnTfNetwork.construct_from_dict(returnnConfig.typed_value('network'))
with tf.Session() as sess:
returnnTfNetwork.load_params_from_file(modelFilePath, sess)
我收到以下错误:
Variables to restore which are not in checkpoint:
global_step_1
Variables in checkpoint which are not needed for restore:
global_step
Probably we can restore these:
(None)
Error, some entry is missing in the checkpoint
答案 0 :(得分:1)
问题是您每次在循环中都重新创建TFNetwork
,并且在那里每次全局步骤也都会创建一个新变量,由于每个变量必须具有唯一的名称,因此必须将其称为不同。
您可以在循环中执行以下操作:
tf.reset_default_graph()