我正在使用来自多个.csv
文件的数据训练模型,但是我发现我的代码读取了文件,但是模型仍然在单个模型上训练。我的代码的相关部分是:
def get_data(datasets_path):
'''
Returns the dataframes.
'''
full_path = datasets_path + "*.csv"
for data_fname in glob.glob(full_path):
df = pd.read_csv(data_fname)
processed_df = __preprocessor(df)
scaler = MinMaxScaler()
transformed_df = scaler.fit_transform(processed_df)
return transformed_df
def batch_generator(X, batch_size=16, shuffle=False):
'''
Return a random sample from X.
'''
count = 0
while True:
if shuffle:
idx = np.random.randint(0, X.shape[0], batch_size)
data = X[idx]
else:
indices = list(n for n in range(X.shape[0]))
data = X[indices[count*batch_size : (count+1)*batch_size]]
count +=1
yield (data, data)
和
data = get_data(path_to_datasets)
x_train, x_test = train_test_split(data, test_size=0.2, random_state=42, shuffle=False)
x_train = np.expand_dims(x_train, axis=1)
x_test = np.expand_dims(x_test, axis=1)
train_gen = batch_generator(x_train, batch_size=32)
valid_gen = batch_generator(x_test, batch_size=32)
然后我定义一个简单的模型并对其进行训练
model.fit_generator(
generator=train_gen,
epochs=1,
steps_per_epoch=x_train.shape[0] // 32,
validation_data=valid_gen,
validation_steps=x_test.shape[0] // 32)
问题在于,这似乎是从单个.csv
文件中进行训练的,而不是遍历所有文件,而且我不明白为什么。
答案 0 :(得分:1)
探针是您在for循环内的return语句。处理单个文件后,get_data
方法将退出循环。尝试使用yield获得迭代器。
def get_data(datasets_path):
'''
Returns the dataframes.
'''
full_path = datasets_path + "*.csv"
for data_fname in glob.glob(full_path):
df = pd.read_csv(data_fname)
processed_df = __preprocessor(df)
scaler = MinMaxScaler()
transformed_df = scaler.fit_transform(processed_df)
yield transformed_df