识别少于1%的语料库文档中出现的单词

时间:2018-06-24 15:44:48

标签: python nlp nltk counter tf-idf

我有一个客户评论语料库,想要识别稀有词,对我来说,这些词出现在少于1%的语料库文档中。

我已经有一个可行的解决方案,但是对于我的脚本来说太慢了:

# Review data is a nested list of reviews, each represented as a bag of words
doc_clean = [['This', 'is', 'review', '1'], ['This', 'is', 'review', '2'], ..] 

# Save all words of the corpus in a set
all_words = set([w for doc in doc_clean for w in doc])

# Initialize a list for the collection of rare words
rare_words = []

# Loop through all_words to identify rare words
for word in all_words:

    # Count in how many reviews the word appears
    counts = sum([word in set(review) for review in doc_clean])

    # Add word to rare_words if it appears in less than 1% of the reviews
    if counts / len(doc_clean) <= 0.01:
        rare_words.append(word)

有人知道更快的实现吗?在每个单独的评论中迭代每个单词似乎很耗时。

先谢谢您,并祝您一切顺利, 马库斯

1 个答案:

答案 0 :(得分:5)

这可能不是最有效的解决方案,但它易于理解和维护,我经常自己使用它。我使用Counter和Pandas:

MatExpr operator *

将计数器应用于每个文档并构建词频矩阵:

MatExpr::operator Mat() const

矩阵中的某些字段未定义。它们对应于特定文档中未出现的单词。计算出现次数:

Txtbin::binarize

现在,选择不经常出现的单词:

import pandas as pd
from collections import Counter