本文结尾处附带的Python3脚本创建了一个简单的表,该表包含5个INT
列,其中3个带有索引。
然后它使用multi-row inserts来填充表格。
在一开始,它设法每秒插入约10000行。
Took 0.983 s to INSERT 10000 rows, i.e. performance = 10171 rows per second.
Took 0.879 s to INSERT 10000 rows, i.e. performance = 11376 rows per second.
Took 0.911 s to INSERT 10000 rows, i.e. performance = 10982 rows per second.
Took 1.180 s to INSERT 10000 rows, i.e. performance = 8477 rows per second.
Took 1.030 s to INSERT 10000 rows, i.e. performance = 9708 rows per second.
Took 1.114 s to INSERT 10000 rows, i.e. performance = 8975 rows per second.
但是当表已经包含约1000000行时,性能将下降到每秒约2000行。
Took 3.648 s to INSERT 10000 rows, i.e. performance = 2741 rows per second.
Took 3.026 s to INSERT 10000 rows, i.e. performance = 3305 rows per second.
Took 5.495 s to INSERT 10000 rows, i.e. performance = 1820 rows per second.
Took 6.212 s to INSERT 10000 rows, i.e. performance = 1610 rows per second.
Took 5.952 s to INSERT 10000 rows, i.e. performance = 1680 rows per second.
Took 4.872 s to INSERT 10000 rows, i.e. performance = 2053 rows per second.
为了进行比较:当使用PostgreSQL而不是CockroachDB时,性能始终约为每秒40000行。
Took 0.212 s to INSERT 10000 rows, i.e. performance = 47198 rows per second.
Took 0.268 s to INSERT 10000 rows, i.e. performance = 37335 rows per second.
Took 0.224 s to INSERT 10000 rows, i.e. performance = 44548 rows per second.
Took 0.307 s to INSERT 10000 rows, i.e. performance = 32620 rows per second.
Took 0.234 s to INSERT 10000 rows, i.e. performance = 42645 rows per second.
Took 0.262 s to INSERT 10000 rows, i.e. performance = 38124 rows per second.
Took 0.301 s to INSERT 10000 rows, i.e. performance = 33254 rows per second.
Took 0.220 s to INSERT 10000 rows, i.e. performance = 45547 rows per second.
Took 0.260 s to INSERT 10000 rows, i.e. performance = 38399 rows per second.
Took 0.222 s to INSERT 10000 rows, i.e. performance = 45136 rows per second.
Took 0.213 s to INSERT 10000 rows, i.e. performance = 46950 rows per second.
Took 0.211 s to INSERT 10000 rows, i.e. performance = 47436 rows per second.
使用CockroachDB时是否可以提高性能?
由于表是连续填充的,因此不能先填充表,然后再添加索引。
db_insert_performance_test.py
:
import random
from timeit import default_timer as timer
import psycopg2
def init_table(cur):
"""Create table and DB indexes"""
cur.execute("""
CREATE TABLE entities (a INT NOT NULL, b INT NOT NULL,
c INT NOT NULL, d INT NOT NULL,
e INT NOT NULL);""")
cur.execute('CREATE INDEX a_idx ON entities (a);')
cur.execute('CREATE INDEX b_idx ON entities (b);')
cur.execute('CREATE INDEX c_idx ON entities (c);')
# d and e does not need an index.
def create_random_event_value():
"""Returns a SQL-compatible string containing a value tuple"""
def randval():
return random.randint(0, 100000000)
return f"({randval()}, {randval()}, {randval()}, {randval()}, {randval()})"
def generate_statement(statement_template, rows_per_statement):
"""Multi-row insert statement for 200 random entities like this:
INSERT INTO entities (a, b, ...) VALUES (1, 2, ...), (6, 7, ...), ...
"""
return statement_template.format(', '.join(
create_random_event_value()
for i in range(rows_per_statement)))
def main():
"""Write dummy entities into db and output performance."""
# Config
database = 'db'
user = 'me'
password = 'pwd'
host, port = 'cockroach-db', 26257
#host, port = 'postgres-db', 5432
rows_per_statement = 200
statements_per_round = 50
rounds = 100
statement_template = 'INSERT INTO entities (a, b, c, d, e) VALUES {}'
# Connect to DB
conn = psycopg2.connect(database=database, user=user, password=password,
host=host, port=port)
conn.set_session(autocommit=True)
cur = conn.cursor()
init_table(cur)
for _ in range(rounds):
# statements_per_round multi-row INSERTs
# with rows_per_statement rows each
batch_statements = [generate_statement(statement_template,
rows_per_statement)
for _ in range(statements_per_round)]
# Measure insert duration
start = timer()
for batch_statement in batch_statements:
cur.execute(batch_statement)
duration = timer() - start
# Calculate performance
row_count = rows_per_statement * statements_per_round
rows_per_second = int(round(row_count / duration))
print('Took {:7.3f} s to INSERT {} rows, '
'i.e. performance = {:>6} rows per second.'
''.format(duration, row_count, rows_per_second), flush=True)
# Close the database connection.
cur.close()
conn.close()
if __name__ == '__main__':
main()
要在此处快速重现我的结果,请使用docker-compose.yml
:
version: '2.4'
services:
cockroach-db:
image: cockroachdb/cockroach:v2.0.3
command: start --insecure --host cockroach-db --vmodule=executor=2
healthcheck:
test: nc -z cockroach-db 26258
cockroach-db-init:
image: cockroachdb/cockroach:v2.0.3
depends_on:
- cockroach-db
entrypoint: /cockroach/cockroach sql --host=cockroach-db --insecure -e "CREATE DATABASE db; CREATE USER me; GRANT ALL ON DATABASE db TO me;"
postgres-db:
image: postgres:10.4
environment:
POSTGRES_USER: me
POSTGRES_PASSWORD: pwd
POSTGRES_DB: db
healthcheck:
test: nc -z postgres-db 5432
db-insert-performance-test:
image: python:3.6
depends_on:
- cockroach-db-init
- postgres-db
volumes:
- .:/code
working_dir: /
entrypoint: bash -c "pip3 install psycopg2 && python3 code/db_insert_performance_test.py"
要开始测试,只需运行docker-compose up db-insert-performance-test
。
答案 0 :(得分:4)
CockroachDB将数据存储在“范围”内,并且当它们达到64MB时范围会拆分。最初,表格适合一个范围,因此每个插入都是单范围操作。范围拆分后,每个插入都需要包含多个范围以更新表和索引;因此那里的性能可能会下降。
答案 1 :(得分:0)
由于缺少固定的体积,性能可能也会受到影响。如果默认使用docker的文件系统,那也会对吞吐量产生负面影响。
答案 2 :(得分:0)
如上Livius所述,删除索引是许多数据仓库使用的一项技术,因为它有助于显着加快批量插入的速度。我知道您说的是行被“连续填充”,但这是否意味着来自其他连接?如果不是,则可以锁定表,删除索引,插入行,然后再重新添加索引。保留当前索引的问题是B-Tree索引需要在插入的每一行上进行处理,并定期重新平衡。
此外,您是否真的需要三个单独的索引,每个索引只有一列?通过将列添加到其他索引之一中,可以创建更少的索引吗?换句话说,您通常只使用该表的a
子句中的列WHERE
查询该表吗?它通常与其他列之一一起使用吗?也许您倾向于使用JOIN
在b
子句中使用a
来查询由另一个表WHERE
对该表进行查询。如果是这样,为什么不将索引合并为idx_ab (a, b)
?
只是一些想法。公平地说,我不了解CockroachDB,但是传统的关系数据库往往会以类似的方式工作。