我想在下面的图像中检测一个正方形:
我想通过在正方形的角上画一个 3维框来突出显示正方形,如下图所示:
如何精确计算所有线坐标,以便稍后在“ 3维”框中绘制? (给出的是黑色正方形的4个角点)
注意:您可以在https://www.youtube.com/watch?v=oSq9V2b5AZ8上找到我想要实现的视频。
如果您想帮助我,如果您分享一些代码行,如何计算4个缺失点,以及如何知道哪些点匹配在一起以绘制从startPoint(x,y)到endPoint的线,我将非常高兴(x,y)。例如js中的某些行会很有帮助:)
答案 0 :(得分:2)
首先找到轮廓,然后选择极限点。然后,您指定新的3D角并使用cv2.line()绘制它们。
示例:
import cv2
import numpy as np
import imutils
image = cv2.imread('3d2.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
thresh = cv2.threshold(gray, 190, 255, cv2.THRESH_BINARY)[1]
cv2.bitwise_not(thresh, thresh)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
c = max(cnts, key=cv2.contourArea)
extLeft = tuple(c[c[:, :, 0].argmin()][0])
extRight = tuple(c[c[:, :, 0].argmax()][0])
extTop = tuple(c[c[:, :, 1].argmin()][0])
extBot = tuple(c[c[:, :, 1].argmax()][0])
leftx = int(extLeft[0])
lefty = int(extLeft[1]) - 90
rightx = int(extRight[0])
righty = int(extRight[1]) -90
topx = int(extTop[0])
topy = int(extTop[1]) -90
bottomx = int(extBot[0])
bottomy = int(extBot[1]) -90
leftc = (leftx, lefty)
rightc = (rightx, righty)
topc = (topx, topy)
bottomc = (bottomx, bottomy)
line = cv2.line(image, extLeft, leftc, (0,255,0), 2)
line = cv2.line(image, extRight, rightc, (0,255,0), 2)
line = cv2.line(image, extTop, topc, (0,255,0), 2)
line = cv2.line(image, extBot, bottomc, (0,255,0), 2)
line = cv2.line(image, bottomc, leftc, (0,255,0), 2)
line = cv2.line(image, rightc, topc, (0,255,0), 2)
line = cv2.line(image, leftc, topc, (0,255,0), 2)
line = cv2.line(image, rightc, topc, (0,255,0), 2)
line = cv2.line(image, bottomc, rightc, (0,255,0), 2)
cv2.drawContours(image, [c], -1, (0,255,0), 2)
cv2.imshow("Image", image)
cv2.imwrite('3Dbox1.png', image)
cv2.waitKey(0)
结果:
您可以随意提出自己的新观点(例如,如果您希望与图片中的相同,则给出x + 50和y-150):
编辑:
要使盒子旋转,请尝试使用从cv2.minAreaRect()函数获得的角度,如下所示:
import cv2
import numpy as np
import imutils
cap = cv2.VideoCapture(0)
while True:
try:
ret, image = cap.read()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
thresh = cv2.threshold(gray, 190, 255, cv2.THRESH_BINARY)[1]
#cv2.bitwise_not(thresh, thresh)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
c = max(cnts, key=cv2.contourArea)
rect = cv2.minAreaRect(c)
angle = rect[2]
extLeft = tuple(c[c[:, :, 0].argmin()][0])
extRight = tuple(c[c[:, :, 0].argmax()][0])
extTop = tuple(c[c[:, :, 1].argmin()][0])
extBot = tuple(c[c[:, :, 1].argmax()][0])
if angle < 0:
leftx = int(extLeft[0]) - int(angle)
lefty = int(extLeft[1]) - 50 + int(angle)
rightx = int(extRight[0]) - int(angle)
righty = int(extRight[1]) -50 + int(angle)
topx = int(extTop[0]) - int(angle)
topy = int(extTop[1]) -50 + int(angle)
bottomx = int(extBot[0]) - int(angle)
bottomy = int(extBot[1]) -50 + int(angle)
leftc = (leftx, lefty)
rightc = (rightx, righty)
topc = (topx, topy)
bottomc = (bottomx, bottomy)
line = cv2.line(image, extLeft, leftc, (0,255,0), 2)
line = cv2.line(image, extRight, rightc, (0,255,0), 2)
line = cv2.line(image, extTop, topc, (0,255,0), 2)
line = cv2.line(image, extBot, bottomc, (0,255,0), 2)
line = cv2.line(image, bottomc, leftc, (0,255,0), 2)
line = cv2.line(image, rightc, topc, (0,255,0), 2)
line = cv2.line(image, leftc, topc, (0,255,0), 2)
line = cv2.line(image, rightc, topc, (0,255,0), 2)
line = cv2.line(image, bottomc, rightc, (0,255,0), 2)
cv2.drawContours(image, [c], -1, (0,255,0), 2)
elif angle > 0:
leftx = int(extLeft[0]) + int(angle)
lefty = int(extLeft[1]) + 50 + int(angle)
rightx = int(extRight[0]) + int(angle)
righty = int(extRight[1]) +50 + int(angle)
topx = int(extTop[0]) + int(angle)
topy = int(extTop[1]) +50 + int(angle)
bottomx = int(extBot[0]) + int(angle)
bottomy = int(extBot[1]) +50 + int(angle)
leftc = (leftx, lefty)
rightc = (rightx, righty)
topc = (topx, topy)
bottomc = (bottomx, bottomy)
line = cv2.line(image, extLeft, leftc, (0,255,0), 2)
line = cv2.line(image, extRight, rightc, (0,255,0), 2)
line = cv2.line(image, extTop, topc, (0,255,0), 2)
line = cv2.line(image, extBot, bottomc, (0,255,0), 2)
line = cv2.line(image, bottomc, leftc, (0,255,0), 2)
line = cv2.line(image, rightc, topc, (0,255,0), 2)
line = cv2.line(image, leftc, topc, (0,255,0), 2)
line = cv2.line(image, rightc, topc, (0,255,0), 2)
line = cv2.line(image, bottomc, rightc, (0,255,0), 2)
cv2.drawContours(image, [c], -1, (0,255,0), 2)
except:
pass
cv2.imshow("Image", image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
答案 1 :(得分:0)
如果您的照片是等轴测图,这将减少以下问题:
您想要找到与立方体的三个正交边相对应的三个向量的度量。
Edge1:(X1,Y1,Z1)
Edge2:(X2,Y2,Z2)
Edge3:(X3,Y3,Z3)
从图像中,您可以测量其中两个向量的X和Y值,剩下5个未知值。
由于所有三个边都是正交的,因此您也知道它们的点积为零。
最后,由于您要处理一个多维数据集,所以您知道每个向量的大小都相同。
这为您提供了五个方程来求解五个未知变量,这些变量可以唯一地标识一个解决方案。