我正在尝试确定分类中的变量重要性,并在Weka中使用ClassifierAttributeEVal选项。我选择SMO作为分类器,得到以下结果:
=== Run information ===
Evaluator: weka.attributeSelection.ClassifierAttributeEval -execution
slots 1 -B weka.classifiers.functions.SMO -F 5 -T 0.01 -R 1 -E DEFAULT -- -C1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K
"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" calibrator "weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"
Search: weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1
Relation: threatweka
Instances: 2210
Attributes: 5
author
threat
target.section
activity
country
Evaluation mode: 10-fold cross-validation
=== Attribute selection 10 fold cross-validation (stratified), seed: 1 ===
average merit average rank attribute
0.202 +- 0.007 1 +- 0 1 author
0.158 +- 0.004 2 +- 0 3 target.section
0.145 +- 0.003 3 +- 0 4 activity
0.077 +- 0.005 4 +- 0 5 country
有人可以帮助我解释这个结果吗,平均水平和优点是什么?