对于示例数据框:
df <- structure(list(code = c("a1", "a1", "b2", "v4", "f5", "f5", "h7",
"a1"), name = c("katie", "katie", "sally", "tom", "amy", "amy",
"ash", "james"), number = c(3.5, 3.5, 2, 6, 4, 4, 7, 3)), .Names = c("code",
"name", "number"), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,
-8L), spec = structure(list(cols = structure(list(code = structure(list(), class = c("collector_character",
"collector")), name = structure(list(), class = c("collector_character",
"collector")), number = structure(list(), class = c("collector_double",
"collector"))), .Names = c("code", "name", "number")), default = structure(list(), class = c("collector_guess",
"collector"))), .Names = c("cols", "default"), class = "col_spec"))
我要突出显示所有具有两个或多个相同值的“ code”值的记录。我知道我可以使用:
df[duplicated(df$name), ]
但这仅突出显示重复的记录,但是我希望所有重复的代码值(即3个a1s和2个f5s)。
有什么想法吗?
答案 0 :(得分:8)
df[duplicated(df$code) | duplicated(df$code, fromLast=TRUE), ]
code name number
1 a1 katie 3.5
2 a1 katie 3.5
5 f5 amy 4.0
6 f5 amy 4.0
8 a1 james 3.0
受Alok VS启发的另一种解决方案:
ta <- table(df$code)
df[df$code %in% names(ta)[ta > 1], ]
编辑:如果可以保留基数R,那么gdata::duplicated2()
可以提供更多的简洁性。
library(gdata)
df[duplicated2(df$code), ]
答案 1 :(得分:2)
将索引转换为值-然后检查“代码”是否适合以下值:
df[df$code %in% df$code[duplicated(df$code)], ]
code name number
1 a1 katie 3.5
2 a1 katie 3.5
5 f5 amy 4.0
6 f5 amy 4.0
8 a1 james 3.0
答案 2 :(得分:1)
我想出了一个粗略的解决方案,
temp<-aggregate(df$code, by=list(df$code), FUN=length)
temp<-temp[temp$x>1,]
df[df$code %in% temp$Group.1,]