来自以下Pandas数据框。
class MarcaViewSet(viewsets.ModelViewSet):
queryset = Marca.objects.all()
serializer_class = MarcaSerializer
def list(self, request, *args, **kwargs):
queryset = self.queryset
serializer = self.get_serializer(queryset, many=True)
return Response(serializer.data)
我试图创建源自df = pd.DataFrame({'Id': [102,102,102,303,303,944,944,944,944],'A':[1.2,1.2,1.2,0.8,0.8,2.0,2.0,2.0,2.0],'B':[1.8,1.8,1.8,1.0,1.0,2.2,2.2,2.2,2.2],
'A_scored_time':[10,25,0,33,0,40,0,90,0],'B_scored_time':[0,0,30,0,41,0,75,0,95]})
组合的列表,以获得以下与唯一['A_scored_time','B_scored_time']
相对应的列表:
Id
此列表将在下面的功能中应用。
Id(102) = A_Time = [10,25], B_Time = [30]
Id(303) = A_Time = [33], B_Time = [41]
Id(944) = A_Time = [40,90], B_Time = [75,95]
对于范围内的i(区别ID),df在此处具有3个不同的ID。对于每个i,概率阵列y。
x1 = [1,0,0]
x2 = [0,1,0]
x3 = [0,0,1]
k = 100 # constant
total_timeslot = 100 # same as k
A_Time = []
B_Time = []
输出将是len k的数组。一旦获得此值,我将对所有n(n个不同的Id)数组求和。我在追求什么。
y = np.array([1-(A + B)/k, A/k, B/k])
def sum_squared_diff(x1, x2, x3, y):
ssd = []
for k in range(total_timeslot):
if k in A_Time:
ssd.append(sum((x2 - y) ** 2))
elif k in B_Time:
ssd.append(sum((x3 - y) ** 2))
else:
ssd.append(sum((x1 - y) ** 2))
return ssd
的结果是:
df
提供Id(102) = sum(sum_squared_diff(x1, x2, x3, y)) =5.872800000000018
Id(303) = sum(sum_squared_diff(x1, x2, x3, y)) = 3.9407999999999896
Id(944) = sum(sum_squared_diff(x1, x2, x3, y)) =7.760800000000006
答案 0 :(得分:3)
要回答标题中的问题,请使用:
df.groupby('Id')[['A_scored_time','B_scored_time']]\
.agg(lambda x: x[x != 0].tolist())\
.reset_index()
输出:
Id A_scored_time B_scored_time
0 102 [10, 25] [30]
1 303 [33] [41]
2 944 [40, 90] [75, 95]