我有这个数据集
df=structure(list(Dt = structure(c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L,
22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L,
35L, 36L, 37L, 38L, 39L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L,
23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L,
36L, 37L, 38L, 39L), .Label = c("2018-02-20 00:00:00.000", "2018-02-21 00:00:00.000",
"2018-02-22 00:00:00.000", "2018-02-23 00:00:00.000", "2018-02-24 00:00:00.000",
"2018-02-25 00:00:00.000", "2018-02-26 00:00:00.000", "2018-02-27 00:00:00.000",
"2018-02-28 00:00:00.000", "2018-03-01 00:00:00.000", "2018-03-02 00:00:00.000",
"2018-03-03 00:00:00.000", "2018-03-04 00:00:00.000", "2018-03-05 00:00:00.000",
"2018-03-06 00:00:00.000", "2018-03-07 00:00:00.000", "2018-03-08 00:00:00.000",
"2018-03-09 00:00:00.000", "2018-03-10 00:00:00.000", "2018-03-11 00:00:00.000",
"2018-03-12 00:00:00.000", "2018-03-13 00:00:00.000", "2018-03-14 00:00:00.000",
"2018-03-15 00:00:00.000", "2018-03-16 00:00:00.000", "2018-03-17 00:00:00.000",
"2018-03-18 00:00:00.000", "2018-03-19 00:00:00.000", "2018-03-20 00:00:00.000",
"2018-03-21 00:00:00.000", "2018-03-22 00:00:00.000", "2018-03-23 00:00:00.000",
"2018-03-24 00:00:00.000", "2018-03-25 00:00:00.000", "2018-03-26 00:00:00.000",
"2018-03-27 00:00:00.000", "2018-03-28 00:00:00.000", "2018-03-29 00:00:00.000",
"2018-03-30 00:00:00.000"), class = "factor"), ItemRelation = c(158043L,
158043L, 158043L, 158043L, 158043L, 158043L, 158043L, 158043L,
158043L, 158043L, 158043L, 158043L, 158043L, 158043L, 158043L,
158043L, 158043L, 158043L, 158043L, 158043L, 158043L, 158043L,
158043L, 158043L, 158043L, 158043L, 158043L, 158043L, 158043L,
158043L, 158043L, 158043L, 158043L, 158043L, 158043L, 158043L,
158043L, 158043L, 158043L, 234L, 234L, 234L, 234L, 234L, 234L,
234L, 234L, 234L, 234L, 234L, 234L, 234L, 234L, 234L, 234L, 234L,
234L, 234L, 234L, 234L, 234L, 234L, 234L, 234L, 234L, 234L, 234L,
234L, 234L, 234L, 234L, 234L, 234L, 234L, 234L, 234L, 234L, 234L
), stuff = c(200L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 3600L,
0L, 0L, 0L, 0L, 700L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 1000L, 2600L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 400L, 700L,
200L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 3600L, 0L, 0L, 0L,
0L, 700L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1000L,
2600L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 400L, 700L), num = c(1459L,
1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L,
1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L,
1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L,
1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L,
1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L,
1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L,
1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L,
1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L, 1459L,
1459L, 1459L, 1459L, 1459L, 1459L), year = c(2018L, 2018L, 2018L,
2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L,
2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L,
2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L,
2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L,
2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L,
2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L,
2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L,
2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L,
2018L, 2018L, 2018L), action = c(0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 1L, 1L, 1L, 1L)), .Names = c("Dt", "ItemRelation",
"stuff", "num", "year", "action"), class = "data.frame", row.names = c(NA,
-78L))
对该数据执行了下一个操作。 1.按事物计算动作的第一类别和动作的零类别的中位数的操作(后五个非零观测值)。 2.然后从第一类别的中位数减去零类别的中位数。 MKR的解决方案非常准确。
library(dplyr)
df %>% filter(stuff > 0) %>% #First filter out for stuff > 0 which of our interest
group_by(ItemRelation, num, year) %>%
mutate(m = median(stuff[action==1]),
m0 = median(tail(stuff[action==0], 5))) %>% # Calculate m and m0 for all rows
filter(action == 1) %>% # Now keep only rows with action == 1
mutate(m = m-m0) %>%
select(-Dt,-m0,-action
该如何将每个组的计算结果乘以一个动作的数量,但仅对那些大于零的对象计算。 例如,对于阶层
ItemRelation num year
158043 1459 2018
我们有4个在起作用,而只有2个在相加,然后为零 因此我们将计算结果(m)乘以2。
答案 0 :(得分:1)
数据已被stuff>0
中的dplyr - chain
过滤。 n()
代表每组的数量,其中stuff>0
和action ==1
。因此,可以将m
的最终值乘以n()
。最后,distinct
将确保重复的行已被删除。
library(dplyr)
df %>% filter(stuff > 0) %>% #First filter out for stuff > 0 which of our interest
group_by(ItemRelation, num, year) %>%
mutate(m = median(stuff[action==1]),
m0 = median(tail(stuff[action==0], 5))) %>% # Calculate m and m0 for all rows
filter(action == 1) %>% # Now keep only rows with action == 1
mutate(m = (m-m0)*n()) %>%
select(-Dt,-m0,-action, - stuff) %>% distinct()
# # A tibble: 2 x 4
# # Groups: ItemRelation, num, year [2]
# ItemRelation num year m
# <int> <int> <int> <dbl>
# 1 158043 1459 2018 -900
# 2 234 1459 2018 -900