我有两个源自一个矩阵方程的方程:
[x,y] = [[cos(n), -sin(n)],[sin(n), cos(n)]]*[x', y']
,
其中x' = Acos(w1*t+ p1)
和y' = Bcos(w2*t + p2)
。
这只是向量[x,y]
的单个矩阵方程,但是可以分解为两个标量方程:x = A*cos(s)*cos(w1*t+ p1)*x' - B*sin(s)*sin(w2*t + p2)*y'
和y = A*sin(s)*cos(w1*t+ p1)*x' + B*cos(s)*sin(w2*t + p2)*y'
。
因此,我正在拟合两个数据集,x
与t
和y
与t
,但是在这些拟合中有一些共享参数,即{{1 }},A
和B
。
1)我可以直接拟合矩阵方程,还是必须将其分解为标量方程?前者会更优雅。
2)我可以在s
上使用共享参数吗?所有相关问题都使用其他软件包。
答案 0 :(得分:1)
下面的示例代码使用curve_fit将一个共享参数拟合为两个不同的方程。这不是您问题的答案,但是我无法在注释中设置代码格式,因此我将其发布在这里。
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
y1 = np.array([ 16.00, 18.42, 20.84, 23.26, 25.68])
y2 = np.array([-20.00, -25.50, -31.00, -36.50, -42.00])
comboY = np.append(y1, y2)
h = np.array([5.0, 6.1, 7.2, 8.3, 9.4])
comboX = np.append(h, h)
def mod1(data, a, b, c): # not all parameters are used here
return a * data + c
def mod2(data, a, b, c): # not all parameters are used here
return b * data + c
def comboFunc(comboData, a, b, c):
# single data set passed in, extract separate data
extract1 = comboData[:len(y1)] # first data
extract2 = comboData[len(y2):] # second data
result1 = mod1(extract1, a, b, c)
result2 = mod2(extract2, a, b, c)
return np.append(result1, result2)
# some initial parameter values
initialParameters = np.array([1.0, 1.0, 1.0])
# curve fit the combined data to the combined function
fittedParameters, pcov = curve_fit(comboFunc, comboX, comboY, initialParameters)
# values for display of fitted function
a, b, c = fittedParameters
y_fit_1 = mod1(h, a, b, c) # first data set, first equation
y_fit_2 = mod2(h, a, b, c) # second data set, second equation
plt.plot(comboX, comboY, 'D') # plot the raw data
plt.plot(h, y_fit_1) # plot the equation using the fitted parameters
plt.plot(h, y_fit_2) # plot the equation using the fitted parameters
plt.show()
print(fittedParameters)