我正在可视化具有例如分类字段和时间字段的数据集。我想创建一个条形图,显示不同类别的时间分布,这些类别按照“升序”/“降序”顺序排序,具体取决于它们的基数。这可以通过altair
:
import pandas as pd
import altair as alt
data = {0:{'Name':'Mary', 'Sport':'Tennis', 'competition':'2018/06/01'},
1:{'Name':'Cal', 'Sport':'Tennis','competition':'2018/06/05'},
2:{'Name':'John', 'Sport':'Tennis','competition':'2018/05/28'},
3:{'Name':'Jane', 'Sport':'Tennis','competition':'2018/05/20'},
4:{'Name':'Bob', 'Sport':'Golf','competition':'2018/03/01'},
5:{'Name':'Jerry', 'Sport':'Golf','competition':'2018/03/03'},
6:{'Name':'Gustavo', 'Sport':'Golf','competition':'2018/02/28'},
7:{'Name':'Walter', 'Sport':'Swimming','competition':'2018/01/01'},
8:{'Name':'Jessy', 'Sport':'Swimming','competition':'2018/01/03'},
9:{'Name':'Patric', 'Sport':'Running','competition':'2018/02/01'},
10:{'Name':'John', 'Sport':'Shooting','competition':'2018/04/01'}}
df = pd.DataFrame(data).T
alt.Chart(df).mark_tick().encode(
x='yearmonthdate(competition):T',
y=alt.Y('Sport:N',
sort=alt.SortField(field='count(Sport:N)', order='ascending', op='sum')
),
)
现在假设我只对前三个类别感兴趣。按照“Altair/Vega-Lite bar chart: filter top K bars from aggregated field”的公认解决方案,这次情节不会出现:
alt.Chart(df).mark_tick().encode(
x='yearmonthdate(competition):T',
y=alt.Y('Sport:N',
sort=alt.SortField(field='count', order='ascending', op='sum')
),
).transform_aggregate(
count='count()',
groupby=['Sport']
).transform_window(
window=[{'op': 'rank', 'as': 'rank'}],
sort=[{'field': 'count', 'order': 'descending'}]
).transform_filter('datum.rank <= 3')
请注意,即使y标签订单也不符合预期。
答案 0 :(得分:0)
更深入地阅读(并理解)文档,我认为我可以说,altair
/ Vega-Lite
当前(2018年6月)的要求是不可行的。这是我的解释...
对数据执行聚合转换,等同于在SQL查询上添加GROUP BY
子句,因此我们不再能够将任何“原始”数据字段以其“未聚合”形式关联到编码通道:当我尝试在competition
频道中引用x
时,因此是undefined
。
我可以尝试使用查找转换来“自我加入”,但是即使在这种情况下,最终结果也不是我想要的结果,因为这等效于left join
,因此我只得到一个值每个聚合类。
alt.Chart(df).mark_tick().encode(
x=alt.X(field='competition',type='temporal', timeUnit='yearmonthdate'),
y=alt.Y('Sport:N',
sort=alt.SortField(field='count', order='ascending', op='sum')
),
).transform_aggregate(
countX='count()',
groupby=['Sport']
).transform_window(
window=[{'op': 'rank', 'as': 'rank'}],
sort=[{'field': 'countX', 'order': 'descending'}]
).transform_filter('datum.rank <= 3').transform_lookup(
lookup='Sport',
from_=alt.LookupData(data=df, key='Sport',
fields=['competition'])
)
我发现Vega
当前支持实现我想要的结果所必需的东西,而Vega-Lite
和Altair
中都不支持:正是JoinAggregate变换一种或多种汇总的结果“扩展”原始数据。
对于以下输入数据:
[
{"foo": 1, "bar": 1},
{"foo": 1, "bar": 2},
{"foo": null, "bar": 3}
]
联接聚合转换:
{
"type": "joinaggregate",
"fields": ["foo", "bar", "bar"],
"ops": ["valid", "sum", "median"],
"as": ["v", "s", "m"]
}
产生输出:
[
{"foo": 1, "bar": 1, "v": 2, "s": 6, "m": 2},
{"foo": 1, "bar": 2, "v": 2, "s": 6, "m": 2},
{"foo": null, "bar": 3, "v": 2, "s": 6, "m": 2}
]