SCIP无法为小型MINLP模型找到良好的下限

时间:2018-06-18 02:51:06

标签: ampl scip

我正在解决一个小型MINLP模型。这是.nl文件。

g3 1 1 0    # problem unknown
79 102 1 0 24   # vars, constraints, objectives, ranges, eqns
6 0 0 0 0 0 # nonlinear constrs, objs; ccons: lin, nonlin, nd, nzlb
0 0 # network constraints: nonlinear, linear
21 0 0  # nonlinear vars in constraints, objectives, both
0 0 0 1 # linear network variables; functions; arith, flags
24 0 0 0 0  # discrete variables: binary, integer, nonlinear (b,c,o)
276 6   # nonzeros in Jacobian, obj. gradient
0 0 # max name lengths: constraints, variables
0 0 0 0 0   # common exprs: b,c,o,c1,o1
C0
o54
3
o2
v3
v0
o2
v9
v1
o2
v15
v2
C1
o54
3
o2
v4
v0
o2
v10
v1
o2
v16
v2
C2
o54
3
o2
v5
v0
o2
v11
v1
o2
v17
v2
C3
o54
3
o2
v6
v0
o2
v12
v1
o2
v18
v2
C4
o54
3
o2
v7
v0
o2
v13
v1
o2
v19
v2
C5
o54
3
o2
v8
v0
o2
v14
v1
o2
v20
v2
C6
n0
C7
n0
C8
n0
C9
n0
C10
n0
C11
n0
C12
n0
C13
n0
C14
n0
C15
n0
C16
n0
C17
n0
C18
n0
C19
n0
C20
n0
C21
n0
C22
n0
C23
n0
C24
n0
C25
n0
C26
n0
C27
n0
C28
n0
C29
n0
C30
n0
C31
n0
C32
n0
C33
n0
C34
n0
C35
n0
C36
n0
C37
n0
C38
n0
C39
n0
C40
n0
C41
n0
C42
n0
C43
n0
C44
n0
C45
n0
C46
n0
C47
n0
C48
n0
C49
n0
C50
n0
C51
n0
C52
n0
C53
n0
C54
n0
C55
n0
C56
n0
C57
n0
C58
n0
C59
n0
C60
n0
C61
n0
C62
n0
C63
n0
C64
n0
C65
n0
C66
n0
C67
n0
C68
n0
C69
n0
C70
n0
C71
n0
C72
n0
C73
n0
C74
n0
C75
n0
C76
n0
C77
n0
C78
n0
C79
n0
C80
n0
C81
n0
C82
n0
C83
n0
C84
n0
C85
n0
C86
n0
C87
n0
C88
n0
C89
n0
C90
n0
C91
n0
C92
n0
C93
n0
C94
n0
C95
n0
C96
n0
C97
n0
C98
n0
C99
n0
C100
n0
C101
n0
O0 0
n0
x0
r
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
4 0.0
1 0.0
1 0.0
1 0.0
1 0.0
1 0.0
1 0.0
1 0.0
1 0.0
1 0.0
1 0.0
1 0.0
1 0.0
1 0.0
1 0.0
1 0.0
1 0.0
1 0.0
1 0.0
2 -0.05
2 -0.05
2 -0.05
2 -0.05
2 -0.05
2 -0.05
2 -0.05
2 -0.05
2 -0.05
2 -0.05
2 -0.05
2 -0.05
2 -0.05
2 -0.05
2 -0.05
2 -0.05
2 -0.05
2 -0.05
1 100000.0
1 100000.0
1 100000.0
1 100000.0
1 100000.0
1 100000.0
1 100000.0
1 100000.0
1 100000.0
1 100000.0
1 100000.0
1 100000.0
1 100000.0
1 100000.0
1 100000.0
1 100000.0
1 100000.0
1 100000.0
1 -0.05
1 -0.05
1 -0.05
1 -0.05
1 -0.05
1 -0.05
1 -0.05
1 -0.05
1 -0.05
1 -0.05
1 -0.05
1 -0.05
1 -0.05
1 -0.05
1 -0.05
1 -0.05
1 -0.05
1 -0.05
1 -1.0
1 -1.0
1 -1.0
1 0.0
1 0.0
1 0.0
b
0 -10 10
0 -10 10
0 -10 10
2 0
2 0
2 0
2 0
2 0
2 0
2 0
2 0
2 0
2 0
2 0
2 0
2 0
2 0
2 0
2 0
2 0
2 0
0 -10 10
0 -10 10
0 -10 10
0 -10 10
0 -10 10
0 -10 10
0 -10 10
0 -10 10
0 -10 10
0 -10 10
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
k78
6
12
18
23
28
33
38
43
48
53
58
63
68
73
78
83
88
93
98
103
108
114
120
126
132
138
144
150
156
162
168
171
174
177
180
183
186
189
192
195
198
201
204
207
210
213
216
219
222
224
226
228
230
232
234
236
238
240
242
244
246
248
250
252
254
256
258
260
262
264
266
268
270
271
272
273
274
275
J0 8
30 1.0
49 -1.0
0 0
1 0
2 0
3 0
9 0
15 0
J1 8
30 1.0
50 -1.0
0 0
1 0
2 0
4 0
10 0
16 0
J2 8
30 1.0
51 -1.0
0 0
1 0
2 0
5 0
11 0
17 0
J3 8
30 1.0
52 -1.0
0 0
1 0
2 0
6 0
12 0
18 0
J4 8
30 1.0
53 -1.0
0 0
1 0
2 0
7 0
13 0
19 0
J5 8
30 1.0
54 -1.0
0 0
1 0
2 0
8 0
14 0
20 0
J6 4
21 -1.75
24 -1.75
27 1
31 -1
J7 4
22 -1.75
25 -1.75
28 1
37 -1
J8 4
23 -1.75
26 -1.75
29 1
43 -1
J9 4
21 2
24 2
27 1
32 -1
J10 4
22 2
25 2
28 1
38 -1
J11 4
23 2
26 2
29 1
44 -1
J12 4
21 2.5
24 2.5
27 1
33 -1
J13 4
22 2.5
25 2.5
28 1
39 -1
J14 4
23 2.5
26 2.5
29 1
45 -1
J15 4
21 -1.5
24 -1.5
27 1
34 -1
J16 4
22 -1.5
25 -1.5
28 1
40 -1
J17 4
23 -1.5
26 -1.5
29 1
46 -1
J18 4
21 -2
24 -2
27 1
35 -1
J19 4
22 -2
25 -2
28 1
41 -1
J20 4
23 -2
26 -2
29 1
47 -1
J21 4
21 -2.5
24 -2.5
27 1
36 -1
J22 4
22 -2.5
25 -2.5
28 1
42 -1
J23 4
23 -2.5
26 -2.5
29 1
48 -1
J24 2
31 1
3 -1
J25 2
37 1
9 -1
J26 2
43 1
15 -1
J27 2
32 1
4 -1
J28 2
38 1
10 -1
J29 2
44 1
16 -1
J30 2
33 1
5 -1
J31 2
39 1
11 -1
J32 2
45 1
17 -1
J33 2
34 1
6 -1
J34 2
40 1
12 -1
J35 2
46 1
18 -1
J36 2
35 1
7 -1
J37 2
41 1
13 -1
J38 2
47 1
19 -1
J39 2
36 1
8 -1
J40 2
42 1
14 -1
J41 2
48 1
20 -1
J42 1
3 1
J43 1
9 1
J44 1
15 1
J45 1
4 1
J46 1
10 1
J47 1
16 1
J48 1
5 1
J49 1
11 1
J50 1
17 1
J51 1
6 1
J52 1
12 1
J53 1
18 1
J54 1
7 1
J55 1
13 1
J56 1
19 1
J57 1
8 1
J58 1
14 1
J59 1
20 1
J60 3
31 -1
3 1
55 100000
J61 3
37 -1
9 1
61 100000
J62 3
43 -1
15 1
67 100000
J63 3
32 -1
4 1
56 100000
J64 3
38 -1
10 1
62 100000
J65 3
44 -1
16 1
68 100000
J66 3
33 -1
5 1
57 100000
J67 3
39 -1
11 1
63 100000
J68 3
45 -1
17 1
69 100000
J69 3
34 -1
6 1
58 100000
J70 3
40 -1
12 1
64 100000
J71 3
46 -1
18 1
70 100000
J72 3
35 -1
7 1
59 100000
J73 3
41 -1
13 1
65 100000
J74 3
47 -1
19 1
71 100000
J75 3
36 -1
8 1
60 100000
J76 3
42 -1
14 1
66 100000
J77 3
48 -1
20 1
72 100000
J78 2
3 1
55 -100000
J79 2
9 1
61 -100000
J80 2
15 1
67 -100000
J81 2
4 1
56 -100000
J82 2
10 1
62 -100000
J83 2
16 1
68 -100000
J84 2
5 1
57 -100000
J85 2
11 1
63 -100000
J86 2
17 1
69 -100000
J87 2
6 1
58 -100000
J88 2
12 1
64 -100000
J89 2
18 1
70 -100000
J90 2
7 1
59 -100000
J91 2
13 1
65 -100000
J92 2
19 1
71 -100000
J93 2
8 1
60 -100000
J94 2
14 1
66 -100000
J95 2
20 1
72 -100000
J96 2
49 -1
73 -100000
J97 2
50 -1
74 -100000
J98 2
51 -1
75 -100000
J99 2
52 1
76 -100000
J100 2
53 1
77 -100000
J101 2
54 1
78 -100000
G0 6
73 1
74 1
75 1
76 1
77 1
78 1

解算器可以在几秒钟内找到一个好的上限(问题为1),但在几小时内仍然难以改善下限。下限确实是0。因此,最优性差距保持无穷大。直觉上,最佳值应该是1.我无法弄清楚这个问题是怎么回事。有人可以给出一些提示或建议吗?谢谢!

0 个答案:

没有答案