我的部分代码遇到了一些麻烦。我想在Python中找到 cv.Watershed
算法后的轮廓。说实话,我不知道该怎么做。
这是我的代码:
kernel = np.ones((3, 3), np.uint8)
# sure background area
sure_bg = cv2.dilate(image, kernel, iterations=5)
opening = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel, iterations=2)
# Finding sure foreground area
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 3)
ret, sure_fg = cv2.threshold(dist_transform, 0.4 * dist_transform.max(), 255, 0)
# Finding unknown region
sure_fg = np.uint8(sure_fg)
cv.imshow('mark ', sure_fg)
cv.waitKey(0)
# sure_fg = cv2.erode(sure_fg,kernel,iterations=3)
unknown = cv2.subtract(sure_bg, sure_fg)
# Marker labelling
ret, markers = cv2.connectedComponents(sure_fg)
# Add one to all labels so that sure background is not 0, but 1
markers = markers + 1
# Now, mark the region of unknown with zero
markers[unknown == 255] = 0
markers = cv2.watershed(img, markers)
m = cv2.convertScaleAbs(markers)
m = cv2.threshold(m, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
img[markers == -1] = [255, 255, 255]
_, contours, _ = cv2.findContours(img[markers == -1], cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
img[markers == -1] = [255, 255, 255]
标记完美,但如何将其转换为轮廓?
谢谢!
答案 0 :(得分:1)
您无法在img
上找到轮廓,但可以使用markers
。
现在,数组markers
包含值-1,这是一个有符号整数。我将其转换为包含有符号整数markers1 = markers.astype(np.uint8)
的数组,其中-1
的值将替换为255
的值。然后在结果上应用Otsu阈值,然后我找到了轮廓。
以下是您必须添加到现有代码的额外代码:
<强>代码:强>
img2 = img.copy()
markers1 = markers.astype(np.uint8)
ret, m2 = cv2.threshold(markers1, 0, 255, cv2.THRESH_BINARY|cv2.THRESH_OTSU)
cv2.imshow('m2', m2)
_, contours, hierarchy = cv2.findContours(m2, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
for c in contours:
# img2 = img.copy()
# cv2.waitKey(0)
cv2.drawContours(img2, c, -1, (0, 255, 0), 2)
#cv2.imshow('markers1', markers1)
cv2.imshow('contours', img2)
cv2.waitKey(0)
cv2.destroyAllWindows()
<强>结果:强>