搜索缺失值?
columns = ['median', 'p25th', 'p75th']
# Look at the dtypes of the columns
print(____)
# Find how missing values are represented (Search for missing values in the median, p25th, and p75th columns.)
print(recent_grads["median"].____)
# Replace missing values with NaN,using numpy's np.nan.
for column in ___:
recent_grads.loc[____ == '____', column] = ____?
答案 0 :(得分:1)
正确答案是-
for column in columns:
recent_grads.loc[recent_grads[column] == 'UN', column] = np.nan
答案 1 :(得分:0)
x = np.random.rand(44)
y = np.random.rand(40)
d1, inx1 = fastdtw(y, x)
d2, inx2= fastdtw(y, x)
d1, d2
答案 2 :(得分:0)
我们要搜索缺失值的列的名称
columns = ['median', 'p25th', 'p75th']
看看dtypes
print(recent_grads[columns].dtypes)
查找缺失值的表示方式
print(recent_grads["median"].unique())
用NaN替换缺失值
for column in columns:
recent_grads.loc[recent_grads[column] == 'UN', column] = np.nan