我正在为一个数据帧分配不同的数据。我有以下
ValueError: If using all scalar values, you must pass an index
我按照其他Here
的问题发帖但它没有成功。
以下是我的代码。您所要做的就是将代码复制并粘贴到IDE。
import pandas as pd
import numpy as np
#Loading Team performance Data (ExpG (Home away)) For and against
epl_1718 = pd.read_csv("http://www.football-data.co.uk/mmz4281/1718/E0.csv")
epl_1718 = epl_1718[['HomeTeam','AwayTeam','FTHG','FTAG']]
epl_1718 = epl_1718.rename(columns={'FTHG': 'HomeGoals', 'FTAG': 'AwayGoals'})
Home_goal_avg = epl_1718['HomeGoals'].mean()
Away_goal_avg = epl_1718['AwayGoals'].mean()
Home_team_goals = epl_1718.groupby(['HomeTeam'])['HomeGoals'].sum()
Home_count = epl_1718.groupby(['HomeTeam'])['HomeTeam'].count()
Home_team_avg_goal = Home_team_goals/Home_count
Home_team_concede = epl_1718.groupby(['HomeTeam'])['AwayGoals'].sum()
EPL_Home_average_score = epl_1718['HomeGoals'].mean()
EPL_Home_average_conc = epl_1718['HomeGoals'].mean()
Home_team_avg_conc = Home_team_concede/Home_count
Away_team_goals = epl_1718.groupby(['AwayTeam'])['AwayGoals'].sum()
Away_count = epl_1718.groupby(['AwayTeam'])['AwayTeam'].count()
Away_team_avg_goal = Away_team_goals/Away_count
Away_team_concede = epl_1718.groupby(['AwayTeam'])['HomeGoals'].sum()
EPL_Away_average_score = epl_1718['AwayGoals'].mean()
EPL_Away_average_conc = epl_1718['HomeGoals'].mean()
Away_team_avg_conc = Away_team_concede/Away_count
Home_attk_sth = Home_team_avg_goal/EPL_Home_average_score
Home_attk_sth = Home_attk_sth.sort_index().reset_index()
Home_def_sth = Home_team_avg_conc/EPL_Home_average_conc
Home_def_sth = Home_def_sth .sort_index().reset_index()
Away_attk_sth = Away_team_avg_goal/EPL_Away_average_score
Away_attk_sth = Away_attk_sth .sort_index().reset_index()
Away_def_sth = Away_team_avg_conc/EPL_Away_average_conc
Away_def_sth = Away_def_sth.sort_index().reset_index()
Home_def_sth
HomeTeam = epl_1718['HomeTeam'].drop_duplicates().sort_index().reset_index().set_index('HomeTeam')
AwayTeam = epl_1718['AwayTeam'].drop_duplicates().sort_index().reset_index().sort_values(['AwayTeam']).set_index(['AwayTeam'])
#HomeTeam = HomeTeam.sort_index().reset_index()
Team = HomeTeam.append(AwayTeam).drop_duplicates()
Data = pd.DataFrame({"Team":Team,
"Home_attkacking":Home_attk_sth,
"Home_def": Home_def_sth,
"Away_Attacking":Away_attk_sth,
"Away_def":Away_def_sth,
"EPL_Home_avg_score":EPL_Home_average_score,
"EPL_Home_average_conc":EPL_Home_average_conc,
"EPL_Away_average_score":EPL_Away_average_score,
"EPL_Away_average_conc":EPL_Away_average_conc},
columns =['Team','Home_attacking','Home_def','Away_attacking','Away_def',
'EPL_Home_avg_score','EPL_Home_avg_conc','EPL_Away_avg_score','EPL_Away_average_conc'])
在这段代码中,我要做的是获得每队每场比赛的平均目标得分,每队每场比赛的平均得分。 然后我正在计算其他表现因素,如攻击力,防守力等等。
我必须像使用示例一样粘贴代码,创建数据框会起作用。 感谢您的理解。 提前感谢您的建议。
最终数据框的格式(或列)如下所示:
Team Home Attacking Home Defensive Away attacking away defensive
等数据框中提到的。
这意味着,团队专栏下只有20支球队 数据帧的形状为(20,9)
此致
番
答案 0 :(得分:1)
这里的主要想法是删除reset_index
Series
,其中teams
为索引,因此不需要变量Team
,并且reset_index
创建了最后一步。另外,请注意DataFrame
构造函数中的列名称,如果在字典中更改了EPL_Home_average_conc
,然后EPL_Home_avg_conc
获取NaN
列:
Home_team_goals = epl_1718.groupby(['HomeTeam'])['HomeGoals'].sum()
Home_count = epl_1718.groupby(['HomeTeam'])['HomeTeam'].count()
Home_team_avg_goal = Home_team_goals/Home_count
Home_team_concede = epl_1718.groupby(['HomeTeam'])['AwayGoals'].sum()
EPL_Home_average_score = epl_1718['HomeGoals'].mean()
EPL_Home_average_conc = epl_1718['HomeGoals'].mean()
Home_team_avg_conc = Home_team_concede/Home_count
Away_team_goals = epl_1718.groupby(['AwayTeam'])['AwayGoals'].sum()
Away_count = epl_1718.groupby(['AwayTeam'])['AwayTeam'].count()
Away_team_avg_goal = Away_team_goals/Away_count
Away_team_concede = epl_1718.groupby(['AwayTeam'])['HomeGoals'].sum()
EPL_Away_average_score = epl_1718['AwayGoals'].mean()
EPL_Away_average_conc = epl_1718['HomeGoals'].mean()
Away_team_avg_conc = Away_team_concede/Away_count
#removed reset_index
Home_attk_sth = Home_team_avg_goal/EPL_Home_average_score
Home_attk_sth = Home_attk_sth.sort_index()
Home_def_sth = Home_team_avg_conc/EPL_Home_average_conc
Home_def_sth = Home_def_sth .sort_index()
Away_attk_sth = Away_team_avg_goal/EPL_Away_average_score
Away_attk_sth = Away_attk_sth .sort_index()
Away_def_sth = Away_team_avg_conc/EPL_Away_average_conc
Away_def_sth = Away_def_sth.sort_index()
Data = pd.DataFrame({"Home_attacking":Home_attk_sth,
"Home_def": Home_def_sth,
"Away_attacking":Away_attk_sth,
"Away_def":Away_def_sth,
"EPL_Home_average_score":EPL_Home_average_score,
"EPL_Home_average_conc":EPL_Home_average_conc,
"EPL_Away_average_score":EPL_Away_average_score,
"EPL_Away_average_conc":EPL_Away_average_conc},
columns =['Home_attacking','Home_def','Away_attacking','Away_def',
'EPL_Home_average_score','EPL_Home_average_conc',
'EPL_Away_average_score','EPL_Away_average_conc'])
#column from index
Data = Data.rename_axis('Team').reset_index()
print (Data)