我正在尝试在数据框中创建一个新列,该数据列基于另一列中的值分配值。我使用的代码分配值,但不是我想要的。我不确定我缺少什么。
代码示例如下:
#define track styles
short = [4,6,8,9,11,20,24,28,30,33,35]
inter = [2,3,7,12,13,17,19,25,27,32,34,36]
long = [5,14,15,21,23,26]
plate = [1,10,18,31]
road = [16,22,29]
#input driver and stat info
driver1 = input('Choose driver: ')
#read driver data to dataframe
df = pd.read_csv(driver1 + '_2018.csv')
#add track type
df['Type'] = ''
for i in range(len(df)):
if df['Race'][i] in short:
df['Type'][i] = 'short'
elif df['Race'][i] in inter:
df['Type'] = 'intermediate'
elif df['Race'][i] in long:
df['Type'] = 'long'
elif df['Race'][i] in plate:
df['Type'] = 'plate'
else:
df['Type'] = 'road'
print(df.head())
我得到以下输出:
C:\EclipseWorkspace\csse120\Personal\NASCAR_Projects\Other\driver_review.py:45: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
df['Type'][i] = 'short'
Race Start Mid Race ... Total Laps DRIVER RATING Type
0 1 5 23 ... 207 105.2 intermediate
1 2 16 7 ... 325 94.2 intermediate
2 3 10 2 ... 267 106.1 intermediate
3 4 5 11 ... 311 80.0 intermediate
4 5 6 3 ... 200 113.0 intermediate
[5 rows x 20 columns]
请注意,“类型”列在返回所有“中间”时应包含[“ plate”,“ intermediate”,“ intermediate”,“ short”,“ long”]。
答案 0 :(得分:1)
使用map
和dictionary
-首先通过键中的新名称创建dict,然后在值中列出,然后在dict理解中彼此交换为平面词典:
d = {'short':short,
'intermediate':inter,
'long':long,
'plate':plate,
'road':road}
d1 = {k: oldk for oldk, oldv in d.items() for k in oldv}
df['Type'] = df['Race'].map(d1)
print (df)
Race Start Mid Race Total Laps DRIVER RATING Type
0 1 5 23 207 105.2 plate
1 2 16 7 325 94.2 intermediate
2 3 10 2 267 106.1 intermediate
3 4 5 11 311 80.0 short
4 5 6 3 200 113.0 long
如果希望将前4个类别中所有不匹配的值都设置为road
,请从第一个字典中删除road
,然后添加fillna
来替换所有不匹配的值:
d = {'short':short,
'intermediate':inter,
'long':long,
'plate':plate}
d1 = {k: oldk for oldk, oldv in d.items() for k in oldv}
df['Type'] = df['Race'].map(d1).fillna('road')
详细信息:
print (d1)
{
4: 'short', 6: 'short',
8: 'short', 9: 'short',
11: 'short', 20: 'short',
24: 'short', 28: 'short',
30: 'short', 33: 'short',
35: 'short', 2: 'intermediate',
3: 'intermediate', 7: 'intermediate',
12: 'intermediate', 13: 'intermediate',
17: 'intermediate', 19: 'intermediate',
25: 'intermediate', 27: 'intermediate',
32: 'intermediate', 34: 'intermediate',
36: 'intermediate', 5: 'long',
14: 'long', 15: 'long',
21: 'long', 23: 'long',
26: 'long', 1: 'plate',
10: 'plate', 18: 'plate',
31: 'plate', 16: 'road',
22: 'road', 29: 'road'
}