我被困在如何将Pytorch代码转换为Keras of Attention Model

时间:2018-06-13 16:44:42

标签: python keras pytorch

如何将Pytorch模型转换为keras层 Pytorch代码:

class SeqAttnMatch(nn.Module):
    """Given sequences X and Y, match sequence Y to each element in X.

    * o_i = sum(alpha_j * y_j) for i in X
    * alpha_j = softmax(y_j * x_i)
    """

    def __init__(self, input_size, identity=False):
        super(SeqAttnMatch, self).__init__()
        if not identity:
            self.linear = nn.Linear(input_size, input_size)
        else:
            self.linear = None

    def forward(self, x, y, y_mask):
        """
        Args:
            x: batch * len1 * hdim
            y: batch * len2 * hdim
            y_mask: batch * len2 (1 for padding, 0 for true)
        Output:
            matched_seq: batch * len1 * hdim
        """
        # Project vectors
        if self.linear:
            x_proj = self.linear(x.view(-1, x.size(2))).view(x.size())
            x_proj = F.relu(x_proj)
            y_proj = self.linear(y.view(-1, y.size(2))).view(y.size())
            y_proj = F.relu(y_proj)
        else:
            x_proj = x
            y_proj = y

        # Compute scores
        scores = x_proj.bmm(y_proj.transpose(2, 1))

        # Mask padding
        y_mask = y_mask.unsqueeze(1).expand(scores.size())
        scores.data.masked_fill_(y_mask.data, -float('inf'))

        # Normalize with softmax
        alpha_flat = F.softmax(dim=scores.view(-1, y.size(1)))
        alpha = alpha_flat.view(-1, x.size(1), y.size(1))

        # Take weighted average
        matched_seq = alpha.bmm(y)
        return matched_seq


class BilinearSeqAttn(nn.Module):
    """A bilinear attention layer over a sequence X w.r.t y:

    * o_i = softmax(x_i'Wy) for x_i in X.

    Optionally don't normalize output weights.
    """

    def __init__(self, x_size, y_size, identity=False, normalize=True):
        super(BilinearSeqAttn, self).__init__()
        self.normalize = normalize

        # If identity is true, we just use a dot product without transformation.
        if not identity:
            self.linear = nn.Linear(y_size, x_size)
        else:
            self.linear = None

    def forward(self, x, y, x_mask):
        """
        Args:
            x: batch * len * hdim1
            y: batch * hdim2
            x_mask: batch * len (1 for padding, 0 for true)
        Output:
            alpha = batch * len
        """
        Wy = self.linear(y) if self.linear is not None else y
        xWy = x.bmm(Wy.unsqueeze(2)).squeeze(2)
        xWy.data.masked_fill_(x_mask.data, -float('inf'))
        if self.normalize:
            alpha = F.softmax(dim=xWy)
        else:
            alpha = xWy.exp()
        return alpha


class LinearSeqAttn(nn.Module):
    """Self attention over a sequence:

    * o_i = softmax(Wx_i) for x_i in X.
    """

    def __init__(self, input_size):
        super(LinearSeqAttn, self).__init__()
        self.linear = nn.Linear(input_size, 1)

    def forward(self, x, x_mask):
        """
        Args:
            x: batch * len * hdim
            x_mask: batch * len (1 for padding, 0 for true)
        Output:
            alpha: batch * len
        """
        x_flat = x.view(-1, x.size(-1))
        scores = self.linear(x_flat).view(x.size(0), x.size(1))
        scores.data.masked_fill_(x_mask.data, -float('inf'))
        alpha = F.softmax(dim=scores)
        return alpha

0 个答案:

没有答案