我是Keras和Tensorflow的新手,我正在尝试使用LSTM训练我的雷达脉冲数据集。 在编译期间,我已经使它工作,但是当模型开始训练时,我无法使其工作。我不知道在哪里放置重塑以及使用哪个尺寸,因为错误给出的数字我不知道它们来自哪里。
所以代码是:
x_train = load_data("D:\\Software_Herramienta\\Datasets\\sweep_switch_train.csv")
y_train = load_data("D:\\Software_Herramienta\\Datasets\\sweep_switch_labels_train.csv")
x_train = x_train.reshape(-1, x_train.shape[0], x_train.shape[1], 1)
y_train.astype(int)
y_train = y_train.reshape(1,1000)
batch = 10
model = Sequential()
model.add(Convolution2D(32, 3, 3, activation='relu', input_shape=(None, x_train.shape[1], 1)))
model.add(TimeDistributed(Activation('relu')))
model.add(TimeDistributed(Dense(32, name="first_dense")))
model.add(Reshape((3, 4)))
model.add(LSTM(x_train.shape[1], dropout_U=0.2, dropout_W=0.2))
# model.add(Dense(1, activation='softmax'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=15, batch_size=batch)
错误告诉:
> Epoch 1/15
2018-06-13 13:40:17.225066: I T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
Traceback (most recent call last):
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\tensorflow\python\client\session.py", line 1322, in _do_call
return fn(*args)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\tensorflow\python\client\session.py", line 1307, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\tensorflow\python\client\session.py", line 1409, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Input to reshape is a tensor with 31872128 values, but the requested shape has 12
[[Node: reshape_1/Reshape = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"](time_distributed_2/add, reshape_1/Reshape/shape)]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "D:/Software_Herramienta/Pulse_Generator/pulse_model_keras_tf.py", line 74, in <module>
model.fit(x_train, y_train, epochs=15, batch_size=batch)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\keras\models.py", line 1002, in fit
validation_steps=validation_steps)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\keras\engine\training.py", line 1705, in fit
validation_steps=validation_steps)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\keras\engine\training.py", line 1236, in _fit_loop
outs = f(ins_batch)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\keras\backend\tensorflow_backend.py", line 2482, in __call__
**self.session_kwargs)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\tensorflow\python\client\session.py", line 900, in run
run_metadata_ptr)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\tensorflow\python\client\session.py", line 1135, in _run
feed_dict_tensor, options, run_metadata)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\tensorflow\python\client\session.py", line 1316, in _do_run
run_metadata)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\tensorflow\python\client\session.py", line 1335, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Input to reshape is a tensor with 31872128 values, but the requested shape has 12
[[Node: reshape_1/Reshape = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"](time_distributed_2/add, reshape_1/Reshape/shape)]]
Caused by op 'reshape_1/Reshape', defined at:
File "D:/Software_Herramienta/Pulse_Generator/pulse_model_keras_tf.py", line 69, in <module>
model.add(Reshape((3, 4)))
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\keras\models.py", line 522, in add
output_tensor = layer(self.outputs[0])
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\keras\engine\topology.py", line 619, in __call__
output = self.call(inputs, **kwargs)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\keras\layers\core.py", line 406, in call
return K.reshape(inputs, (K.shape(inputs)[0],) + self.target_shape)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\keras\backend\tensorflow_backend.py", line 1898, in reshape
return tf.reshape(x, shape)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 7323, in reshape
"Reshape", tensor=tensor, shape=shape, name=name)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\tensorflow\python\framework\ops.py", line 3392, in create_op
op_def=op_def)
File "D:\Software_Utils\Python_3.6.5\lib\site-packages\tensorflow\python\framework\ops.py", line 1718, in __init__
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
InvalidArgumentError (see above for traceback): Input to reshape is a tensor with 31872128 values, but the requested shape has 12
[[Node: reshape_1/Reshape = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"](time_distributed_2/add, reshape_1/Reshape/shape)]]
答案 0 :(得分:1)
作为Reshape
图层输入的元素数量必须等于其输出中的元素数量(output_shape=(None, 3, 4)
,所以batch_size * 12
元素),目前不是情况下。
您的模型仍在编译中,因为您为模型输入的维0
引入了动态尺寸(例如None
中的input_shape=(None, x_train.shape[1], 1)
。因为None
仅在推理时被实际尺寸大小取代,所以Keras - 在编译时 - 信任您提供尺寸为0
且尺寸合适的样本,以便它们的元素数量在Reshape
等于3 * 4 = 12
。由于您最终使用model.fit()
提供的元素最终变大,因此推断在Reshape
处失败。
具体来说,让我们拿你的代码并分析它。根据跟踪中的值,我假设您的sweep_switch_train.csv
包含每个形状1000x1000x1
的样本:
# Mocking 50 samples of size 1000x1000x1 and their labels:
x_train = np.random.rand(50, 1000, 1000, 1)
y_train = np.random.randint(2, size=50)
让我们尝试构建您的模型:
model = Sequential()
model.add(Convolution2D(32, 3, 3, activation='relu', input_shape=x_train.shape[1:]))
# notice we set input_shape to (1000, 1000, 1) instead of (None, 1000, 1) the way you were.
# This makes the example clearer as Keras directly knows all dimensions.
model.add(TimeDistributed(Activation('relu')))
model.add(TimeDistributed(Dense(32, name="first_dense")))
model.add(Reshape((3, 4)))
model.add(LSTM(x_train.shape[1], dropout_U=0.2, dropout_W=0.2))
尝试运行此代码,您将遇到异常&#34; ValueError: total size of new array must be unchanged
&#34;在model.add(Reshape((3, 4)))
,因为Keras会直接注意到重塑的元素数量不匹配(因为此处None
尺寸大小不会导致模糊不清。)
如果我们逐行查看您的图层&#39;输出形状直到例外:
model = Sequential()
model.add(Convolution2D(32, 3, 3, activation='relu', input_shape=x_train.shape[1:]))
print(model.layers[0].output_shape)
# (None, 998, 998, 32)
model.add(TimeDistributed(Activation('relu')))
print(model.layers[1].output_shape)
# (None, 998, 998, 32)
model.add(TimeDistributed(Dense(32, name="first_dense")))
print(model.layers[2].output_shape)
# (None, 998, 998, 32)
model.add(Reshape((3, 4)))
如您所见,您正在尝试将998 * 998 * 32 = 31872128
元素的矩阵(跟踪中的值)重新整形为3 * 4 = 12
元素的矩阵,从而导致错误。