索引是时间戳和列名,也是将NaN替换为值的功能。它似乎没有工作。
样品:
import pandas as pd
times = pd.to_datetime(pd.Series(['2014-07-4',
'2014-07-15','2014-08-24','2014-08-25','2014-09-10','2014-09-17']))
valuea = [0.01, 0.02, -0.03, 0.4 ,0.5,np.NaN]
times2 = pd.to_datetime(pd.Series(['2014-07-6',
'2014-07-16','2014-08-27','2014-09-5','2014-09-11','2014-09-17']))
valuea2 = [1, 2, 3, 4,5,-6]
df1 = pd.DataFrame({'value A': valuea}, index=times)
df2 = pd.DataFrame({'value A': valuea2}, index=times2)
df3=pd.merge(df1,df2, left_index=True, right_index=True)
df3.head()
答案 0 :(得分:1)
假设您需要外部联接
pd.concat([df1,df2],axis=1)
Out[321]:
value A value A
2014-07-04 0.01 NaN
2014-07-06 NaN 1.0
2014-07-15 0.02 NaN
2014-07-16 NaN 2.0
2014-08-24 -0.03 NaN
2014-08-25 0.40 NaN
2014-08-27 NaN 3.0
2014-09-05 NaN 4.0
2014-09-10 0.50 NaN
2014-09-11 NaN 5.0
2014-09-17 NaN -6.0
更新
df1.combine_first(df2)
Out[324]:
value A
2014-07-04 0.01
2014-07-06 1.00
2014-07-15 0.02
2014-07-16 2.00
2014-08-24 -0.03
2014-08-25 0.40
2014-08-27 3.00
2014-09-05 4.00
2014-09-10 0.50
2014-09-11 5.00
2014-09-17 -6.00