我在ubuntu 16.04中运行脚本时收到此错误。请耐心等待,我是python的新手, 我已经检查了互联网上已有的选项,但我无法修复它。
RuntimeError: cuda runtime error (10) : invalid device ordinal at torch/csrc/cuda/Module.cpp:32
我目前正在运行此文件。
from __future__ import print_function
from models import LipRead
import torch
import toml
from training import Trainer
from validation import Validator
print("Loading options...")
with open('options.toml', 'r') as optionsFile:
options = toml.loads(optionsFile.read())
if(options["general"]["usecudnnbenchmark"] and options["general"] ["usecudnn"]):
print("Running cudnn benchmark...")
torch.backends.cudnn.benchmark = True
#Create the model.
model = LipRead(options)
if(options["general"]["loadpretrainedmodel"]):
model.load_state_dict(torch.load(options["general"] ["pretrainedmodelpath"]))
#Move the model to the GPU.
if(options["general"]["usecudnn"]):
model = model.cuda(options["general"]["gpuid"])
trainer = Trainer(options)
validator = Validator(options)
for epoch in range(options["training"]["startepoch"], options["training"]["epochs"]):
if(options["training"]["train"]):
trainer.epoch(model, epoch)
if(options["validation"]["validate"]):
validator.epoch(model)
我怀疑这个文件与弹出的错误
有关Title = "TOML Example"
[general]
usecudnn = true
usecudnnbenchmark = true
gpuid = 0
loadpretrainedmodel = true
pretrainedmodelpath = "trainedmodel.pt"
savemodel = true
modelsavepath = "savedmodel.pt"
[input]
batchsize = 18
numworkers = 18
shuffle = true
[model]
type = "LSTM"
inputdim = 256
hiddendim = 256
numclasses = 500
numlstms = 2
[training]
train = true
epochs = 15
startepoch = 10
statsfrequency = 1000
dataset = "/udisk/pszts-ssd/AV-ASR-data/BBC_Oxford/lipread_mp4"
learningrate = 0.003
momentum = 0.9
weightdecay = 0.0001
[validation]
validate = true
dataset = "/udisk/pszts-ssd/AV-ASR-data/BBC_Oxford/lipread_mp4"
saveaccuracy = true
accuracyfilelocation = "accuracy.txt"
错误主要在gpuid行中,因为我终于达到了。
答案 0 :(得分:2)
尝试这样做
import torch
print(torch.cuda.is_available())
如果输出为False,则意味着PyTorch未检测到GPU。 我有同样的问题,并重新安装Pytorch为我工作。 您可能还想查看此https://github.com/pytorch/pytorch/issues/6098。
答案 1 :(得分:0)
如果在不同数量的Cuda设备上训练了预训练模型,则可能会收到该错误。例如,在训练模型时,您使用了3台Cuda设备,现在您将同一训练过的模型加载到只有一台Cuda设备的设备上。
答案 2 :(得分:0)
预训练的权重可能会映射到其他gpuid。
#WAS
model.load_state_dict(torch.load(final_model_file, map_location={'cuda:0':'cuda:1'}))
#IS
model.load_state_dict(torch.load(final_model_file, map_location={'cuda:0':'cuda:0'}))