我有类允许复合协方差函数(也称为内核参见https://stats.stackexchange.com/questions/228552/covariance-functions-or-kernels-what-exactly-are-they),然后计算给定新内核的协方差,例如:
auto C = GaussianKernel(50,60) + GaussianKernel(100,200);
auto result = C.covarianceFunction(30.0,40.0);
但问题是,当我想计算协方差时,我会调用std::function
,是否有一种简单的方法可以避免它?
请注意,我想计算一个大的协方差矩阵(大约50K * 50K),这意味着性能很重要。
以下是代码
class Kernel {
public:
/*
Covariance function : return the covariance between two R.V. for the entire kernel's domain definition.
*/
virtual double covarianceFunction(
double X,
double Y
)const = 0 ;
~Kernel() = default;
};
class FooKernel : public Kernel {
public:
FooKernel(std::function<double(double, double)> fun) : fun_(fun) {}
double covarianceFunction(
double X,
double Y
) const {
return fun_(X, Y);
}
template<class T>
auto operator+(const T b) const {
return FooKernel([b, this](double X, double Y) -> double {
return this->covarianceFunction(X, Y) + b.covarianceFunction(X, Y);
});
}
FooKernel operator=(const FooKernel other) const {
return other;
}
private:
std::function<double(double, double)> fun_;
};
class GaussianKernel : public Kernel {
public:
GaussianKernel(double sigma, double scale) : m_sigma(sigma), m_scale(scale) {}
GaussianKernel(double sigma) : m_sigma(sigma), m_scale(1) {}
/*
A well known covariance function that enforces smooth deformations
Ref : Shape modeling using Gaussian process Morphable Models, Luethi et al.
*/
double covarianceFunction(
double X,
double Y
) const
{
//use diagonal matrix
doulbe result;
result = m_scale * exp(-std::norm(X - Y) / (m_sigma*m_sigma));
return result;
}
template<class T>
auto operator+(const T b) const {
return FooKernel([b, this](double X, double Y) -> double {
auto debugBval = b.covarianceFunction(X, Y);
auto debugAval = this->covarianceFunction(X, Y);
auto test = debugBval + debugAval;
return test;
});
}
private:
double m_sigma;
double m_scale;
};
答案 0 :(得分:7)
通过模板化FooKernel,您可以避免使用std :: function。
#include <iostream>
#include <complex>
#include <functional>
class Kernel {
public:
/*
Covariance function : return the covariance between two R.V. for the entire kernel's domain definition.
*/
virtual double covarianceFunction(
double X,
double Y
)const = 0 ;
~Kernel() = default;
};
template <typename Func>
class FooKernel : public Kernel {
public:
FooKernel(Func&& fun) : fun_(std::forward<Func>(fun)) {}
double covarianceFunction(
double X,
double Y
) const {
return fun_(X, Y);
}
template<class T>
auto operator+(const T b) const {
return make_foo_kernel([b, this](double X, double Y) -> double {
return this->covarianceFunction(X, Y) + b.covarianceFunction(X, Y);
});
}
FooKernel operator=(const FooKernel other) const {
return other;
}
private:
Func fun_;
};
template <typename Func>
auto make_foo_kernel(Func&& fun)
{
return FooKernel<Func>(std::forward<Func>(fun));
}
class GaussianKernel : public Kernel {
public:
GaussianKernel(double sigma, double scale) : m_sigma(sigma), m_scale(scale) {}
GaussianKernel(double sigma) : m_sigma(sigma), m_scale(1) {}
/*
A well known covariance function that enforces smooth deformations
Ref : Shape modeling using Gaussian process Morphable Models, Luethi et al.
*/
double covarianceFunction(
double X,
double Y
) const
{
//use diagonal matrix
double result;
result = m_scale * exp(-std::norm(X - Y) / (m_sigma*m_sigma));
return result;
}
template<class T>
auto operator+(const T b) const {
return make_foo_kernel([b, this](double X, double Y) -> double {
auto debugBval = b.covarianceFunction(X, Y);
auto debugAval = this->covarianceFunction(X, Y);
auto test = debugBval + debugAval;
return test;
});
}
private:
double m_sigma;
double m_scale;
};
int main()
{
auto C = GaussianKernel(50,60) + GaussianKernel(100,200);
auto result = C.covarianceFunction(30.0,40.0);
return 0;
}
答案 1 :(得分:1)
使用此设计,使用std::function
的唯一改进是对类进行模板参数化,这可能会产生其他不需要的问题。
template<class Fun>
class FooKernel : public Kernel {
public:
FooKernel(Fun&& fun) : fun_(std::forward<Fun>(fun)) {}
...
private:
Fun fun_;
};
如果你不想模拟你的类,如果你需要你的类拥有一个有状态的函数对象,那么std::function
就是唯一的方法。
但是,如果您不需要所有权或该功能或功能对象是无状态的(例如免费功能),并且您在问题中说明我可以为您提供替代选项。
答案 2 :(得分:1)
如你所说,你喜欢 "files": [
"App/Helpers/AppHelper.php",
"App/Helpers/CoinHiveApi.php",
"App/Helpers/CloudflareAPI.php"
]
的清晰度,你可以试试这个非拥有的函数引用类:
std::function
这不具有#include <utility>
template<typename TSignature> class function_ref;
template<typename TRet, typename ...TParams>
class function_ref<TRet(TParams...)> final
{
using refptr_t = void*;
using callback_t = TRet (*)(refptr_t, TParams&&...);
callback_t m_callback = nullptr;
refptr_t m_callable = nullptr;
public:
constexpr function_ref() noexcept = default;
constexpr function_ref(const function_ref&) noexcept = default;
constexpr function_ref& operator=(const function_ref&) noexcept = default;
constexpr function_ref(function_ref&&) noexcept = default;
constexpr function_ref& operator=(function_ref&&) noexcept = default;
~function_ref() noexcept = default;
template <
typename T,
typename = typename std::enable_if_t<
std::is_invocable_r_v<TRet, T(TParams...), TParams...> &&
!std::is_convertible_v<std::decay_t<T>, function_ref>
>
>
constexpr function_ref(T &&_callable) noexcept :
m_callback(
[](refptr_t callable, TParams&& ...params)
{return (*reinterpret_cast<std::remove_reference_t<T>*>(callable))(std::forward<TParams>(params)...);}
),
m_callable(reinterpret_cast<refptr_t>(std::addressof(_callable)))
{}
constexpr decltype(auto) operator()(TParams&& ...params) noexcept
{
return m_callback(m_callable, std::forward<TParams>(params)...);
}
constexpr operator bool() noexcept { return m_callback; }
};
的开销,因为它不需要拥有可调用对象,并且通过我的测试,它通常完全内联std::function
优化。这是我修改过的Vittorio Romeo在talk中讨论过的类的实现。您仍然需要观察传递给构造函数的函数的生命周期,但是它很适合使用函数参数。
使用示例:
-O3