我正在使用以下代码中的过程(我从here获取)到我试图尽可能快地运行的程序。然而,该程序非常缓慢,因为它可能是为了教学目的而不是速度而优化的。
program tree_sort
! Sorts a file of integers by building a
! tree, sorted in infix order.
! This sort has expected behavior n log n,
! but worst case (input is sorted) n ** 2.
implicit none
type node
integer :: value
type (node), pointer :: left, right
end type node
type (node), pointer :: t ! A tree
integer :: number, ios
nullify (t) ! Start with empty tree
do
read (*, *, iostat = ios) number
if (ios < 0) exit
call insert (t, number) ! Put next number in tree
end do
! Print nodes of tree in infix order
call print_tree (t)
contains
recursive subroutine insert (t, number)
type (node), pointer :: t ! A tree
integer, intent (in) :: number
! If (sub)tree is empty, put number at root
if (.not. associated (t)) then
allocate (t)
t % value = number
nullify (t % left)
nullify (t % right)
! Otherwise, insert into correct subtree
else if (number < t % value) then
call insert (t % left, number)
else
call insert (t % right, number)
end if
end subroutine insert
recursive subroutine print_tree (t)
! Print tree in infix order
type (node), pointer :: t ! A tree
if (associated (t)) then
call print_tree (t % left)
print *, t % value
call print_tree (t % right)
end if
end subroutine print_tree
end program tree_sort
有没有办法加快速度?我正在使用该过程顺序向向量添加元素而不添加重复元素(因此我将else
子例程中的insert
更改为else if (number > t % value) then
。除此之外,我不是打印I store全局变量中的值。
修改
以下是实际代码:
MODULE MOD_PARAMETERS
USE, INTRINSIC :: ISO_FORTRAN_ENV
IMPLICIT NONE
SAVE
INTEGER(INT32), PARAMETER :: d = 10 ! number of dimensions
INTEGER(INT32), PARAMETER :: L_0 = 5 ! after this adaptive grid kicks in, for L <= L_0 usual sparse grid
INTEGER(INT32), PARAMETER :: L_max = 5 ! maximum level
INTEGER(INT32), PARAMETER :: bound = 1 ! 0 -> for f = 0 at boundary
! 1 -> adding grid points at boundary
! 2 -> extrapolating close to boundary
INTEGER(INT32), PARAMETER :: testing_sample = 10**4
INTEGER(INT32), PARAMETER :: error_sample = 10**2
REAL(REAL64), PARAMETER :: eps = 0.001D0 ! epsilon for adaptive grid
TYPE NODE
INTEGER :: value
TYPE (NODE), POINTER :: left, right
END TYPE NODE
INTEGER(INT32), DIMENSION(:), ALLOCATABLE :: tree_vector
INTEGER(INT32) :: iii
END MODULE MOD_PARAMETERS
SUBROUTINE FF(x,output)
USE MOD_PARAMETERS
IMPLICIT NONE
REAL(REAL64), DIMENSION(d), INTENT(IN) :: x
REAL(REAL64) , INTENT(OUT) :: output
output = 1.0D0/(ABS(0.5D0-SUM(x(:)**4.0D0))+0.1D0)
END SUBROUTINE
SUBROUTINE XX(n,L,i,output)
USE MOD_PARAMETERS
IMPLICIT NONE
INTEGER(INT32) , INTENT(IN) :: n
INTEGER(INT32), DIMENSION(n), INTENT(IN) :: L, i
REAL(REAL64), DIMENSION(n), INTENT(OUT) :: output
INTEGER(INT32) :: j
DO j = 1,n
IF ((bound .EQ. 0) .OR. (bound .EQ. 2)) THEN
output(j) = REAL(i(j),REAL64)/REAL(2**L(j),REAL64)
ELSEIF (bound .EQ. 1) THEN
output(j) = REAL(i(j),REAL64)/REAL(2**MAX(L(j)-1,1),REAL64)
ENDIF
ENDDO
END SUBROUTINE
SUBROUTINE XX_INV(L,x,output)
USE MOD_PARAMETERS
IMPLICIT NONE
INTEGER(INT32), DIMENSION(d), INTENT(IN) :: L
REAL(REAL64), DIMENSION(d), INTENT(IN) :: x
INTEGER(INT32), DIMENSION(d), INTENT(OUT) :: output
INTEGER(INT32) :: j
DO j = 1,d
IF ((bound .EQ. 0) .OR. (bound .EQ. 2)) THEN
output(j) = 2*FLOOR(x(j)*REAL(2**(L(j)-1),REAL64))+1
ELSEIF (bound .EQ. 1) THEN
IF (L(j) .EQ. 2) THEN
IF (x(j) .LT. 0.5D0) THEN
output(j) = 0
ELSE
output(j) = 2
ENDIF
ELSE
output(j) = 2*FLOOR(x(j)*(REAL(2**MAX(L(j)-2,0),REAL64)))+1
ENDIF
ENDIF
ENDDO
END SUBROUTINE
SUBROUTINE BASE(x,L,i,output)
USE MOD_PARAMETERS
IMPLICIT NONE
REAL(REAL64), INTENT(IN) :: x
INTEGER(INT32), INTENT(IN) :: L,i
REAL(REAL64), INTENT(OUT) :: output
IF (bound .EQ. 0) THEN
output = MAX((1.0D0-ABS(x*REAL(2**L,REAL64)-REAL(i,REAL64))),0.0D0)
ELSEIF (bound .EQ. 1) THEN
IF ((L .EQ. 1) .AND. (i .EQ. 1)) THEN
output = 1.0D0
ELSEIF ((L .EQ. 2) .AND. (i .EQ. 0)) THEN
output = MAX(1.0D0-2.0D0*x,0.0D0)
ELSEIF ((L .EQ. 2) .AND. (i .EQ. 2)) THEN
output = MAX(2.0D0*x-1.0D0,0.0D0)
ELSE
output = MAX((1.0D0-ABS(x*REAL(2**(L-1),REAL64)-REAL(i,REAL64))),0.0D0)
ENDIF
ELSEIF (bound .EQ. 2) THEN
IF ((L .EQ. 1) .AND. (i .EQ. 1)) THEN
output = 1.0D0
ELSEIF ((L .GT. 1) .AND. (i .EQ. 1)) THEN
output = MAX(2.0D0-REAL(2**L,REAL64)*x,0.0D0)
ELSEIF ((L .GT. 1) .AND. (i .EQ. (2**L)-1)) THEN
output = MAX(REAL(2**L,REAL64)*x+REAL(1-i,REAL64),0.0D0)
ELSE
output = MAX((1.0D0-ABS(x*REAL(2**L,REAL64)-REAL(i,REAL64))),0.0D0)
ENDIF
ENDIF
END SUBROUTINE
PROGRAM MAIN
USE MOD_PARAMETERS
IMPLICIT NONE
INTEGER(INT32), DIMENSION(d,d) :: ident
REAL(REAL64), DIMENSION(1) :: x1
REAL(REAL64), DIMENSION(d) :: xd
INTEGER(INT32), DIMENSION(2*d) :: temp
INTEGER(INT32), DIMENSION(:,:), ALLOCATABLE :: grid_index, temp_grid_index, grid_index_new, J_index, &
adj_list, temp_adj_list
INTEGER(INT32), DIMENSION(:), ALLOCATABLE :: to_do, to_do_new, to_add_ind
REAL(REAL64), DIMENSION(:), ALLOCATABLE :: coeff, temp_coeff, J_coeff
REAL(REAL64) :: temp_min, temp_max, V, T, B, F
INTEGER(INT32) :: i, k, k1, k2, h, j, L, n, dd, dsize, count, count1, count2, count3, flag, &
first, repeated, add, ind, adj_list_ind
INTEGER(INT32) :: time1, time2, time3, time4, clock_rate, clock_max
INTEGER(INT32), DIMENSION(d) :: LL, ii
REAL(REAL64), DIMENSION(error_sample,d) :: sample_x
REAL(REAL64), DIMENSION(error_sample) :: sample_e, interp1
REAL(REAL64) :: max_error, L2_error
REAL(REAL64), DIMENSION(testing_sample,d) :: x_rand
REAL(REAL64), DIMENSION(testing_sample) :: interp2
TYPE(NODE), POINTER :: tree
! ============================================================================
! EXECUTABLE
! ============================================================================
ident = 0
DO i = 1,d
ident(i,i) = 1
ENDDO
! Initial grid point
dsize = 1
ALLOCATE(grid_index(dsize,2*d),grid_index_new(dsize,2*d),adj_list(dsize,2*d))
grid_index(1,:) = 1
grid_index_new = grid_index
adj_list = 0
ALLOCATE(coeff(0:dsize))
coeff(0) = 0.0D0
xd = 0.5D0
CALL FF(xd,coeff(1))
L = 1
n = SIZE(grid_index_new,1)
ALLOCATE(J_index(n*2*d,2*d))
ALLOCATE(J_coeff(n*2*d))
ALLOCATE(to_add_ind(1))
to_add_ind = 1
CALL RANDOM_NUMBER(sample_x)
sample_e = 0.0D0
CALL SYSTEM_CLOCK (time1,clock_rate,clock_max)
DO WHILE (L .LT. L_max)
CALL SYSTEM_CLOCK (time3,clock_rate,clock_max)
L = L+1
n = SIZE(grid_index_new,1)
count = 0
first = 1
DEALLOCATE(J_index,J_coeff)
ALLOCATE(J_index(n*2*d,2*d))
ALLOCATE(J_coeff(n*2*d))
J_index = 0
J_coeff = 0.0D0
DO k = 1,n
adj_list_ind = 0
DO i = 1,d
DO j = 1,2
IF ((bound .EQ. 0) .OR. (bound .EQ. 2)) THEN
temp = grid_index_new(k,:)+(/ident(i,:),ident(i,:)*(grid_index_new(k,d+i)-(-1)**j)/)
ELSEIF (bound .EQ. 1) THEN
IF (grid_index_new(k,i) .EQ. 1) THEN
temp = grid_index_new(k,:)+(/ident(i,:),ident(i,:)*(-(-1)**j)/)
ELSE
temp = grid_index_new(k,:)+(/ident(i,:),ident(i,:)*(grid_index_new(k,d+i)-(-1)**j)/)
ENDIF
ENDIF
CALL XX(d,temp(1:d),temp(d+1:2*d),xd)
temp_min = MINVAL(xd)
temp_max = MAXVAL(xd)
IF ((temp_min .GE. 0.0D0) .AND. (temp_max .LE. 1.0D0)) THEN
IF (first .EQ. 1) THEN
first = 0
count = count+1
J_index(count,:) = temp
V = 0.0D0
DO k1 = 1,SIZE(grid_index,1)
T = 1.0D0
DO k2 = 1,d
CALL XX(1,temp(k2),temp(d+k2),x1)
CALL BASE(x1(1),grid_index(k1,k2),grid_index(k1,k2+d),B)
T = T*B
ENDDO
V = V+coeff(k1)*T
ENDDO
CALL FF(xd,F)
J_coeff(count) = F-V
adj_list(to_add_ind(k),adj_list_ind+1) = dsize+count
adj_list_ind = adj_list_ind+1
ELSE
repeated = 0
DO h = 1,count
IF (SUM(ABS(J_index(h,:)-temp)) .EQ. 0) THEN
repeated = 1
adj_list(to_add_ind(k),adj_list_ind+1) = dsize+h
adj_list_ind = adj_list_ind+1
ENDIF
ENDDO
IF (repeated .EQ. 0) THEN
count = count+1
J_index(count,:) = temp
V = 0.0D0
DO k1 = 1,SIZE(grid_index,1)
T = 1.0D0
DO k2 = 1,d
CALL XX(1,temp(k2),temp(d+k2),x1)
CALL BASE(x1(1),grid_index(k1,k2),grid_index(k1,k2+d),B)
T = T*B
ENDDO
V = V+coeff(k1)*T
ENDDO
CALL FF(xd,F)
J_coeff(count) = F-V
adj_list(to_add_ind(k),adj_list_ind+1) = dsize+count
adj_list_ind = adj_list_ind+1
ENDIF
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ALLOCATE(temp_grid_index(dsize,2*d))
ALLOCATE(temp_coeff(dsize))
temp_grid_index = grid_index
temp_coeff = coeff
DEALLOCATE(grid_index,coeff)
ALLOCATE(grid_index(dsize+count,2*d))
ALLOCATE(coeff(0:dsize+count))
grid_index(1:dsize,:) = temp_grid_index
coeff(0:dsize) = temp_coeff
DEALLOCATE(temp_grid_index,temp_coeff)
grid_index(dsize+1:dsize+count,:) = J_index(1:count,:)
coeff(dsize+1:dsize+count) = J_coeff(1:count)
IF (L .LT. L_max) THEN ! put this after error threshhold when implemented
ALLOCATE(temp_adj_list(dsize,2*d))
temp_adj_list = adj_list
DEALLOCATE(adj_list)
ALLOCATE(adj_list(dsize+count,2*d))
adj_list = 0
adj_list(1:dsize,:) = temp_adj_list
DEALLOCATE(temp_adj_list)
ENDIF
dsize = dsize + count
IF (L .LE. L_0) THEN
DEALLOCATE(grid_index_new)
ALLOCATE(grid_index_new(count,2*d))
grid_index_new = J_index(1:count,:)
DEALLOCATE(to_add_ind)
ALLOCATE(to_add_ind(count))
to_add_ind = dsize-count + (/ (h,h=1,count) /)
ELSE
DEALLOCATE(to_add_ind)
ALLOCATE(to_add_ind(count))
add = 0
to_add_ind = 0
DO h = 1,count
IF (ABS(J_coeff(h)) .GT. eps) THEN
add = add + 1
J_index(add,:) = J_index(h,:)
to_add_ind(add) = dsize-count+h
ENDIF
ENDDO
DEALLOCATE(grid_index_new)
ALLOCATE(grid_index_new(add,2*d))
grid_index_new = J_index(1:add,:)
ENDIF
DO i = 1,error_sample
V = 0.0D0
DO k1 = 1,SIZE(grid_index,1)
T = 1.0D0
DO k2 = 1,d
CALL BASE(sample_x(i,k2),grid_index(k1,k2),grid_index(k1,k2+d),B)
T = T*B
ENDDO
V = V+coeff(k1)*T
ENDDO
CALL FF(sample_x(i,:),F)
sample_e(i) = F-V
interp1(i) = V
ENDDO
max_error = MAXVAL(ABS(sample_e))
L2_error = (SUM(sample_e**2.0D0)/REAL(error_sample,REAL64))**0.5D0
CALL SYSTEM_CLOCK (time4,clock_rate,clock_max)
WRITE(*,'(A,I5,A,F10.5,A,I8,A,F15.10,A,F15.10)') ' level = ', L,&
' time = ',REAL(time4-time3,REAL64)/REAL(clock_rate,REAL64),&
' grid points = ',SIZE(grid_index,1),&
' max error = ',max_error,&
' L2 error = ',L2_error
ENDDO
!PRINT *, ' '
!PRINT *, ' '
!PRINT *, ' '
!DO i = 1,SIZE(adj_list,1)
! PRINT *, i, adj_list(i,:)
!ENDDO
!PRINT *, ' '
!PRINT *, ' '
!PRINT *, ' '
!DO i = 1,dsize
! PRINT *, i, grid_index(i,:), coeff(i)
!ENDDO
!PRINT *, ' '
!PRINT *, ' '
!PRINT *, ' '
ALLOCATE (to_do(dsize),to_do_new(dsize),tree_vector(dsize))
CALL SYSTEM_CLOCK (time2,clock_rate,clock_max)
PRINT *, ' '
WRITE(*,'(A,F10.5)') ' total time for setup = ', REAL(time2-time1,REAL64)/REAL(clock_rate,REAL64)
! ============================================================================
! Compute interpolated values:
! ============================================================================
IF (testing_sample .EQ. error_sample) THEN
! x_rand = sample_x
ELSE
CALL RANDOM_NUMBER(x_rand)
ENDIF
count1 = 0
count2 = 0
count3 = 0
CALL SYSTEM_CLOCK (time1,clock_rate,clock_max)
DO i = 1,testing_sample
V = 0.0D0
to_do = 0
to_do(1) = 1
to_do_new = 0
k = 1
DO L = 1,L_max
NULLIFY (tree)
tree_vector = 0
CALL SYSTEM_CLOCK (time3,clock_rate,clock_max)
DO j = 1,k
ind = to_do(j)
T = 1.0D0
DO dd = 1,d
CALL BASE(x_rand(i,dd),grid_index(ind,dd),grid_index(ind,d+dd),B)
T = T*B
ENDDO
V = V + coeff(ind)*T
ENDDO
CALL SYSTEM_CLOCK (time4,clock_rate,clock_max)
count1 = count1 + time4-time3
IF (L .LT. L_max) THEN
n = k
k = 0
DO j = 1,n
IF (adj_list(to_do(j),1) .GT. 0) THEN
DO h = 1,2*d
CALL SYSTEM_CLOCK (time3,clock_rate,clock_max)
LL = grid_index(adj_list(to_do(j),h),1:d)
ii = grid_index(adj_list(to_do(j),h),d+1:2*d)
flag = 0
k1 = 1
DO WHILE ((flag .EQ. 0) .AND. (k1 .LE. d))
IF ((bound .EQ. 0) .OR. (bound .EQ. 2)) THEN
k2 = 2*FLOOR(x_rand(i,k1)*REAL(2**(LL(k1)-1),REAL64))+1
ELSEIF (bound .EQ. 1) THEN
IF (LL(k1) .EQ. 2) THEN
IF (x_rand(i,k1) .LT. 0.5D0) THEN
k2 = 0
ELSE
k2 = 2
ENDIF
ELSE
k2 = 2*FLOOR(x_rand(i,k1)*(REAL(2**MAX(LL(k1)-2,0),REAL64)))+1
ENDIF
ENDIF
IF (k2 .NE. ii(k1)) THEN
flag = 1
ENDIF
k1 = k1 +1
ENDDO
CALL SYSTEM_CLOCK (time4,clock_rate,clock_max)
count2 = count2 + time4-time3
! CALL SYSTEM_CLOCK (time3,clock_rate,clock_max)
IF (flag .EQ. 0) THEN
!IF (MINVAL(ABS(to_do_new(1:MAX(k,1))-adj_list(to_do(j),h))) .GT. 0) THEN
to_do_new(k+1) = adj_list(to_do(j),h)
k = k+1
CALL SYSTEM_CLOCK (time3,clock_rate,clock_max)
CALL INSERT(tree,to_do_new(k))
CALL SYSTEM_CLOCK (time4,clock_rate,clock_max)
count3 = count3 + time4-time3
!ENDIF
ENDIF
! CALL SYSTEM_CLOCK (time4,clock_rate,clock_max)
! count3 = count3 + time4-time3
ENDDO
ENDIF
ENDDO
CALL SYSTEM_CLOCK (time3,clock_rate,clock_max)
iii = 0
CALL PRINT_TREE(tree)
to_do = tree_vector
CALL SYSTEM_CLOCK (time4,clock_rate,clock_max)
count3 = count3 + time4-time3
!to_do = to_do_new
to_do_new = 0
ENDIF
ENDDO
interp2(i) = V
ENDDO
CALL SYSTEM_CLOCK (time2,clock_rate,clock_max)
PRINT *, ' '
WRITE(*,'(A,F10.5,A,I10)') ' time for interpolation = ', REAL(time2-time1,REAL64)/REAL(clock_rate,REAL64),&
' points = ', testing_sample
PRINT *, ' '
WRITE(*,'(A,F10.5)') ' time for base = ', REAL(count1,REAL64)/REAL(clock_rate,REAL64)
PRINT *, ' '
WRITE(*,'(A,F10.5)') ' time for x_inv = ', REAL(count2,REAL64)/REAL(clock_rate,REAL64)
PRINT *, ' '
WRITE(*,'(A,F10.5)') ' time for repeated = ', REAL(count3,REAL64)/REAL(clock_rate,REAL64)
!PRINT *, ' '
!WRITE(*,'(A,F20.15)') ' check = ', MAXVAL(ABS(interp2-interp1))
DEALLOCATE(grid_index,grid_index_new,J_index,coeff,J_coeff,adj_list,to_do,to_do_new,to_add_ind,tree_vector)
CONTAINS
RECURSIVE SUBROUTINE INSERT(tree,number)
TYPE(NODE), POINTER :: tree
INTEGER(INT32), INTENT(IN) :: number
IF (.NOT. ASSOCIATED(tree)) THEN
ALLOCATE(tree)
tree%value = number
NULLIFY(tree%left)
NULLIFY(tree%right)
ELSEIF (number .LT. tree%value) THEN
CALL INSERT (tree%left,number)
ELSEIF (number .GT. tree%value) THEN
CALL INSERT(tree%right,number)
ENDIF
END SUBROUTINE INSERT
RECURSIVE SUBROUTINE PRINT_TREE(tree)
TYPE (NODE), POINTER :: tree
IF (ASSOCIATED(tree)) THEN
CALL PRINT_TREE(tree%left)
iii = iii+1
tree_vector(iii) = tree%value
CALL PRINT_TREE (tree%right)
END IF
END SUBROUTINE PRINT_TREE
END PROGRAM
我正在使用优化O3
,但没有标记。在我的计算机中,time for repeated
(我使用二叉树的位置)是18.3秒,而如果我使用在版本中注释的替代方法(使用MINVAL
),则只需3.6秒