我正在尝试创建一个包含两个主要类的项目--SparkConsumer和KafkaProducer。为此,我在sbt文件中引入了多项目结构。消费者和生产者模块用于单独的项目,核心项目保存工具,生产者和消费者都使用。 Root是主要项目。还引入了常见设置和库依赖项。但是,由于某种原因,该项目无法编译。所有sbt组装相关的settigns都标记为红色。但是,带有已定义的sbt-assembly插件的plugins.sbt位于根项目中。
这个问题的解决方案可能是什么?
项目结构如下:
这是build.sbt文件:
lazy val overrides = Seq("com.fasterxml.jackson.core" % "jackson-core" % "2.9.5",
"com.fasterxml.jackson.core" % "jackson-databind" % "2.9.5",
"com.fasterxml.jackson.module" % "jackson-module-scala_2.11" % "2.9.5")
lazy val commonSettings = Seq(
name := "Demo",
version := "0.1",
scalaVersion := "2.11.8",
resolvers += "Spark Packages Repo" at "http://dl.bintray.com/spark-packages/maven",
dependencyOverrides += overrides
)
lazy val assemblySettings = Seq(
assemblyMergeStrategy in assembly := {
case PathList("org","aopalliance", xs @ _*) => MergeStrategy.last
case PathList("javax", "inject", xs @ _*) => MergeStrategy.last
case PathList("javax", "servlet", xs @ _*) => MergeStrategy.last
case PathList("javax", "activation", xs @ _*) => MergeStrategy.last
case PathList("org", "apache", xs @ _*) => MergeStrategy.last
case PathList("com", "google", xs @ _*) => MergeStrategy.last
case PathList("com", "esotericsoftware", xs @ _*) => MergeStrategy.last
case PathList("com", "codahale", xs @ _*) => MergeStrategy.last
case PathList("com", "yammer", xs @ _*) => MergeStrategy.last
case PathList("org", "slf4j", xs @ _*) => MergeStrategy.last
case PathList("org", "neo4j", xs @ _*) => MergeStrategy.last
case PathList("com", "typesafe", xs @ _*) => MergeStrategy.last
case PathList("net", "jpountz", xs @ _*) => MergeStrategy.last
case PathList("META-INF", xs @ _*) => MergeStrategy.discard
case "about.html" => MergeStrategy.rename
case "META-INF/ECLIPSEF.RSA" => MergeStrategy.last
case "META-INF/mailcap" => MergeStrategy.last
case "META-INF/mimetypes.default" => MergeStrategy.last
case "plugin.properties" => MergeStrategy.last
case "log4j.properties" => MergeStrategy.last
case x =>
val oldStrategy = (assemblyMergeStrategy in assembly).value
oldStrategy(x)
}
)
val sparkVersion = "2.2.0"
lazy val commonDependencies = Seq(
"org.apache.kafka" %% "kafka" % "1.1.0",
"org.apache.spark" %% "spark-core" % sparkVersion % "provided",
"org.apache.spark" %% "spark-sql" % sparkVersion,
"org.apache.spark" %% "spark-streaming" % sparkVersion,
"org.apache.spark" %% "spark-streaming-kafka-0-10" % sparkVersion,
"neo4j-contrib" % "neo4j-spark-connector" % "2.1.0-M4",
"com.typesafe" % "config" % "1.3.0",
"org.neo4j.driver" % "neo4j-java-driver" % "1.5.1",
"com.opencsv" % "opencsv" % "4.1",
"com.databricks" %% "spark-csv" % "1.5.0",
"com.github.tototoshi" %% "scala-csv" % "1.3.5",
"org.elasticsearch" %% "elasticsearch-spark-20" % "6.2.4"
)
lazy val root = (project in file("."))
.settings(
commonSettings,
assemblySettings,
libraryDependencies ++= commonDependencies,
assemblyJarName in assembly := "demo_root.jar"
)
.aggregate(core, consumer, producer)
lazy val core = project
.settings(
commonSettings,
assemblySettings,
libraryDependencies ++= commonDependencies
)
lazy val consumer = project
.settings(
commonSettings,
assemblySettings,
libraryDependencies ++= commonDependencies,
mainClass in assembly := Some("consumer.SparkConsumer"),
assemblyJarName in assembly := "demo_consumer.jar"
)
.dependsOn(core)
lazy val producer = project
.settings(
commonSettings,
assemblySettings,
libraryDependencies ++= commonDependencies,
mainClass in assembly := Some("producer.KafkaCheckinsProducer"),
assemblyJarName in assembly := "demo_producer.jar"
)
.dependsOn(core)
更新:堆栈跟踪
(producer / update) java.lang.IllegalArgumentException: a module is not authorized to depend on itself: demo#demo_2.11;0.1
[error] (consumer / update) java.lang.IllegalArgumentException: a module is not authorized to depend on itself: demo#demo_2.11;0.1
[error] (core / Compile / compileIncremental) Compilation failed
[error] (update) sbt.librarymanagement.ResolveException: unresolved dependency: org.apache.spark#spark-sql_2.12;2.2.0: not found
[error] unresolved dependency: org.apache.spark#spark-streaming_2.12;2.2.0: not found
[error] unresolved dependency: org.apache.spark#spark-streaming-kafka-0-10_2.12;2.2.0: not found
[error] unresolved dependency: com.databricks#spark-csv_2.12;1.5.0: not found
[error] unresolved dependency: org.elasticsearch#elasticsearch-spark-20_2.12;6.2.4: not found
[error] unresolved dependency: org.apache.spark#spark-core_2.12;2.2.0: not found
答案 0 :(得分:1)
未解决的依赖项:org.apache.spark#spark-sql_2.12; 2.2.0
Spark 2.2.0需要Scala 2.11,请参阅https://spark.apache.org/docs/2.2.0/ 由于某些原因,不应用来自commonSettings的scalaVersion。您可能需要设置全局scalaVersion来处理它。
Spark运行在Java 8 +,Python 2.7 + / 3.4 +和R 3.1+上。对于Scala API, Spark 2.2.0使用Scala 2.11。您需要使用兼容的Scala 版本(2.11.x)。
此外,spark-sql和spark-streaming也应标记为“提供”