我试图在带有月度数据的pandas数据框架上使用rolling()函数。但是,我删除了一些NaN值,所以现在我的时间序列中存在一些空白。因此,基本窗口参数给出了误导性的答案,因为它只是看了之前的观察结果:
import pandas as pd
import numpy as np
import random
dft = pd.DataFrame(np.random.randint(0,10,size=len(dt)),index=dt)
dft.columns = ['value']
dft['value'] = np.where(dft['value'] < 3,np.nan,dft['value'])
dft = dft.dropna()
dft['basic'] = dft['value'].rolling(2).sum()
参见2017-08-31条目,其总和为3.0和9.0,但之前的条目是2017-03-31。
In [57]: dft.tail()
Out[57]:
value basic
2017-02-28 8.0 12.0
2017-03-31 3.0 11.0
2017-08-31 9.0 12.0
2017-10-31 7.0 16.0
2017-11-30 7.0 14.0
自然解决方案(我认为)是使用&#39; 2M&#39;偏移,但它给出了一个错误:
In [58]: dft['basic2M'] = dft['value'].rolling('2M').sum()
...<output omitted>...
ValueError: <2 * MonthEnds> is a non-fixed frequency
如果我移动每日偏移,我可以让它工作,但这似乎是一个奇怪的解决方法:
In [59]: dft['basic32D'] = dft['value'].rolling('32D', min_periods=2).sum()
In [61]: dft.tail()
Out[61]:
value basic basic32D
2017-02-28 8.0 12.0 12.0
2017-03-31 3.0 11.0 11.0
2017-08-31 9.0 12.0 NaN
2017-10-31 7.0 16.0 NaN
2017-11-30 7.0 14.0 14.0
我也尝试过转换为PeriodIndex:
dfp = dft.to_period(freq='M')
但这会产生同样的错误:
dfp['basic2M'] = dfp['value'].rolling('2M').sum()
这是非常意外的:
dfp['basic32Dp'] = dfp['value'].rolling('32D', min_periods=2).sum()
In [68]: dfp
Out[68]:
value basic basic32D basic32Dp
2016-02 9.0 NaN NaN NaN
2016-03 3.0 12.0 12.0 12.0
2016-04 7.0 10.0 10.0 19.0
2016-05 3.0 10.0 10.0 22.0
2016-06 4.0 7.0 7.0 26.0
2016-07 7.0 11.0 11.0 33.0
2016-08 3.0 10.0 10.0 36.0
2016-09 9.0 12.0 12.0 45.0
2016-11 5.0 14.0 NaN 50.0
2017-01 4.0 9.0 NaN 54.0
2017-02 8.0 12.0 12.0 62.0
2017-03 3.0 11.0 11.0 65.0
2017-08 9.0 12.0 NaN 74.0
2017-10 7.0 16.0 NaN 81.0
2017-11 7.0 14.0 14.0 88.0
&#32; 32D&#39;用&#39; M&#39;偏移期间指数似乎被视为&#39; 32M&#39;也许?它似乎只是整个系列的一个扩展总和。
也许我误解了如何使用补偿?显然,我可以通过将NaN保留在原始value
列中并使用window参数来解决这个问题,但是偏移似乎非常有用。
对于它的价值,如果我使用DateTimeIndex生成每小时数据,事情似乎按预期工作(即,每12小时一次数据的偏移和数据给出了缺失行的正确答案)。
答案 0 :(得分:1)
这是一个函数,可以为您提供指定月数的滚动总和。您没有在上面的代码中提供变量“dt”,所以我只是创建了一个日期时间列表(包括代码)。
from datetime import datetime
from dateutil.relativedelta import relativedelta
import pandas as pd
import numpy as np
import random
def date_range(start_date, end_date, increment, period):
result = []
nxt = start_date
delta = relativedelta(**{period:increment})
while nxt <= end_date:
result.append(nxt)
nxt += delta
return result
def MonthRollSum(df, offset, sumColumn):
#must have DateTimeIndex
df2 = df.copy()
df2.index = df2.index + pd.DateOffset(days = -offset)
return df2.groupby([df2.index.year, df2.index.month])[sumColumn].sum()
# added this part to generate the dt list for 8hour interval for 1000 days
start_date = datetime.now()
end_date = start_date + relativedelta(days=1000)
end_date = end_date.replace(hour=19, minute=0, second=0, microsecond=0)
dt = date_range(start_date, end_date, 8, 'hours')
# the following was given by the questioner
dft = pd.DataFrame(np.random.randint(0,10,size=len(dt)),index=dt)
dft.columns = ['value']
dft['value'] = np.where(dft['value'] < 3,np.nan,dft['value'])
dft = dft.dropna()
# Call the solution function
dft = MonthRollSum(dft, 2, 'value')
dft
由于初始值列表是随机生成的,因此结果会有很大差异:
2021 2 290.0
3 379.0
4 414.0
5 368.0
6 325.0
7 405.0
8 425.0
9 380.0
10 393.0
11 370.0
12 419.0
2022 1 377.0
2 275.0
3 334.0
4 350.0
5 395.0
6 376.0
7 420.0
8 419.0
9 359.0
10 328.0
11 394.0
12 345.0
2023 1 381.0
2 335.0
3 352.0
4 355.0
5 376.0
6 350.0
7 401.0
8 443.0
9 394.0
10 394.0