从tesseract hocr xhtml文件

时间:2018-06-05 14:10:46

标签: python xhtml tesseract hocr

我正在尝试使用Python从Tesseract的hocr输出文件中提取数据。我们仅限于tesseact版本3.04,因此没有image_to_data函数或tsv输出可用。我已经能够使用beautifulsoup和R来完成它,但是在它需要部署的环境中既不可用。我只想提取“x_wconf”这个词和信心。下面是一个示例输出文件,我很高兴能够返回[90,87,89,89]和['the','(快速)','[brown]','{fox}的列表','跳!']。

lxml是环境中elementtree之外唯一可用的xml解析器,所以我有点不知道如何继续。

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
  <title></title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
  <meta name='ocr-system' content='tesseract 3.05.00dev' />
  <meta name='ocr-capabilities' content='ocr_page ocr_carea ocr_par ocr_line ocrx_word'/>
</head>
<body>
  <div class='ocr_page' id='page_1' title='image "./testing/eurotext.png"; bbox 0 0 1024 800; ppageno 0'>
   <div class='ocr_carea' id='block_1_1' title="bbox 98 66 918 661">
    <p class='ocr_par' id='par_1_1' lang='eng' title="bbox 98 66 918 661">
     <span class='ocr_line' id='line_1_1' title="bbox 105 66 823 113; baseline 0.015 -18; x_size 39; x_descenders 7; x_ascenders 9"><span class='ocrx_word' id='word_1_1' title='bbox 105 66 178 97; x_wconf 90'>The</span> <span class='ocrx_word' id='word_1_2' title='bbox 205 67 347 106; x_wconf 87'><strong>(quick)</strong></span> <span class='ocrx_word' id='word_1_3' title='bbox 376 69 528 109; x_wconf 89'>[brown]</span> <span class='ocrx_word' id='word_1_4' title='bbox 559 71 663 110; x_wconf 89'>{fox}</span> <span class='ocrx_word' id='word_1_5' title='bbox 687 73 823 113; x_wconf 89'>jumps!</span> 
     </span>
    </p>
   </div>
  </div>
 </body>
</html>

1 个答案:

答案 0 :(得分:2)

使用xpath计算出(粗略)方法。

def hocr_to_dataframe(fp):

    from lxml import etree
    import pandas as pd
    import os

    doc = etree.parse('fp')
    words = []
    wordConf = []

    for path in doc.xpath('//*'):
        if 'ocrx_word' in path.values():
            conf = [x for x in path.values() if 'x_wconf' in x][0]
            wordConf.append(int(conf.split('x_wconf ')[1]))
            words.append(path.text)

    dfReturn = pd.DataFrame({'word' : words,
                             'confidence' : wordConf})

    return(dfReturn)