readNetFromTensorflow函数无法加载tensorflow预训练模型(.pb)。
步骤1:训练张量流的模型。 线性回归码的张量流模型如下:
transaction Vaccinate {
--> Child inchild
--> defVaccin aboutvaccin
o DateTime dateOfVaccin
}
步骤2:将模型保存为张量流的.pb文件。怎么做?
步骤3:使用带有C ++的opencv3.4.1函数readNetFromTensorflow加载.pb文件。这样的代码:
function vaccinate(vaccinate) {
var factory = getFactory();
var vaccin = factory.newConcept('vaccinspace', 'Vaccin', vaccinate.aboutvaccin.vaccinId); // create vaccin concept
// define value of concept's properties
vaccin.vaccinId = vaccinate.aboutvaccin.vaccinId;
vaccin.dateOfVaccin = vaccinate.dateOfVaccin;
// add this vaccine at the list of child's vaccines
vaccinate.inchild.addArrayValue("vaccins", vaccin)
return getAssetRegistry('vaccinspace.Child')
.then (function (assetRegistry) {
return assetRegistry.update(vaccinate.inchild); // update the list of child's vaccines
});
}
结果应为7。 有两个问题。首先是如何生成训练模型的完整.pb文件,另一个是如何在opencv3.4.1 dnn中使用C ++预训练模型?
答案 0 :(得分:0)
我发现这个程序发生了什么。问题出现在步骤2中。必须使用tensorflow函数convert_variables_to_constants将默认图形转换为新图形。然后使用tf.train.write_graph可以完全保存旧的预训练模型。最后只需修改步骤2中的代码,即可成功加载预训练模型。步骤2的新代码如下:
#!/usr/bin/python
import tensorflow as tf
import numpy as np
x_ = tf.placeholder(np.float32, [None, 1], 'input')
y_ = tf.placeholder(np.float32, [None, 1], 'label')
#layer1
a1 = tf.layers.dense(input=x_,units=3,name="layer1")
#layer2
a2 = tf.layers.dense(input=x_,units=1,name="layer2")
#global steps
steps = 5000
x = []
y = []
for i in range(1,200,5):
temp = (1.0 * i)/10
x.append([temp])
y.append([3. + 2. * temp])
x = np.array(x)
y = np.array(y)
#loss function
loss = tf.reduce_mean(tf.reduce_sum(tf.square(a2-y_)))
#optimizer
optimizer = tf.train.GradientDescentOptimizer(0.00001).minimize(loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
length = len(x)
#training...
for i in range(steps):
sess.run(optimizer,feed_dict={x_:x,y_:y})
result = sess.run(loss,feed_dict={x_:x,y_:y})
if i % 50 == 0:
print("loss: ",result,"\tstep: ",i)
#save the .pbtxt file of the pre-trained model.
tf.train.write_graph(sess.graph.as_graph_def(), "./model/",
#transfrom default graph and save as a new graph.
# the param 'output_node_names' should be the last op's name in the pre-trained model. In this model, last op's name is "layer2/BiasAdd" that found in the .pbtxt file like this:
#node{
# name: "layer2/BiasAdd"
# op: "BiasAdd"
# .....
output_graph_def = tf.graph_util.convert_variables_to_constants(sess,sess.graph_def,output_node_names=['layer2/BiasAdd'])
tf.train.write_graph(output_graph_def, "./model/", "graph.pbtxt",as_txt = False)
print("predict...")
pre = sess.run(a2,feed_dict={x_:[[0]]})
print("x = 2 pre: ",pre)
C ++代码几乎与上述相同:
#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace std;
using namespace cv;
using namespace dnn;
std::vector<std::string> classes;
int main(int argc,char**argv)
{
if(argc != 2)
{
cout<<"Usage: ./main [tensorflow modle path(.pb)]"<<endl;
return -1;
}
String model = argv[1];
Net net = cv::dnn::readNetFromTensorflow(model,argv[2]);
if(net.empty())
{
cout<<"load Net failed"<<endl;
return -1;
}
cout<<"load Net OK!!"<<endl;
float inp[1*1] = {0};
Mat Matrix(1,1,CV_32FC1,inp);
cout<<"Matrix:\n"<<Matrix<<endl;
net.setInput(Matrix);
Mat output = net.forward();
#the value of the output should be equal to the output of the Step 1.
cout<<"output: " << output <<endl;
return 0;
}
此外,当我使用w1,b1和w2,b2而不是tf.layers.dense构建网络时,出现了一个我现在不理解的错误:
Error: Unspecified error (More than one input is Const op) in getConstBlob, file /home/wy/Downloads/opencv 3.4.1/modules/dnn/src/tensorflow/tf_importer.cpp, line 571
异常:OpenCV(3.4.1)/home/wy/Downloads/opencv-3.4.1/modules/dnn/src/tensorflow/tf_importer.cpp:571:错误:( - 2)不止一个输入是Const op in function getConstBlob