OpenACC CPU与GPU优化

时间:2018-06-02 21:32:39

标签: c++ gpu openacc pgi

我是OpenACC的菜鸟,我尝试优化代码,因为CPU得到:

Time = Time + omp_get_wtime();
    {
      #pragma acc parallel loop
      for (int i = 1;i < k-1; i++)
      {
        jcount[i]=((int)(MLT[i]/dt))+1;
      }
      jcount[0]=0;
      jcount[k-1]=N;

          #pragma acc parallel loop collapse(2)
            for (int i = 0;i < k - 1; i++)
            {
                for(int j=jcount[i];j < jcount[i+1];j++)
                {
                    w[j] = (j*dt - MLT[i])/(MLT[i+1]-MLT[i]);
                    X[j] = MLX[i]*(1-w[j])+MLX[i+1]*w[j];
                    Y[j] = MLY[i]*(1-w[j])+MLY[i+1]*w[j];
                }
            }
    }
Time = omp_get_wtime() - Time;

对于我的Intel I7(我关闭超线程)有6个内核我得到了很差的并行化,6个与1个内核的差异只有30%(这意味着70%的代码按顺序运行,但我不是看哪里)

对于GPU:

...
    acc_init( acc_device_nvidia );
...
TimeGPU = TimeGPU + omp_get_wtime();
    {
      #pragma acc kernels loop independent  copyout(jcount[0:k]) copyin(MLT[0:k],dt)
      for (int i = 1;i < k-1; i++)
      {
        jcount[i]=((int)(MLT[i]/dt))+1;
      }
      jcount[0]=0;
      jcount[k-1]=N;

          #pragma acc kernels loop independent copyout(X[0:N+1],Y[0:N+1]) copyin(MLT[0:k],MLX[0:k],MLY[0:k],dt) copy(w[0:N])
            for (int i = 0;i < k - 1; i++)
            {
                for(int j=jcount[i];j < jcount[i+1];j++)
                {
                    w[j] = (j*dt - MLT[i])/(MLT[i+1]-MLT[i]);
                    X[j] = MLX[i]*(1-w[j])+MLX[i+1]*w[j];
                    Y[j] = MLY[i]*(1-w[j])+MLY[i+1]*w[j];
                }
            }
    }
TimeGPU = omp_get_wtime() - TimeGPU;

GPU(gtx1070)比6核心处理器慢3倍!

Launch parameters:
GPU: pgc++ -ta=tesla:cuda9.0 -Minfo=accel -O4
CPU: pgc++ -ta=multicore -Minfo=accel -O4

k = 20000,N = 2百万

更新

更改GPU代码:

TimeGPU = TimeGPU + omp_get_wtime();
#pragma acc data create(jcount[0:k],w[0:N]) copyout(X[0:N+1],Y[0:N+1]) copyin(MLT[0:k],MLX[0:k],MLY[0:k],dt)
    {
      #pragma acc parallel loop
      for (int i = 1;i < k-1; i++)
      {
        jcount[i]=((int)(MLT[i]/dt))+1;
      }
      jcount[0]=0;
      jcount[k-1]=N;

          #pragma acc parallel loop
            for (int i = 0;i < k - 1; i++)
            {
                for(int j=jcount[i];j < jcount[i+1];j++)
                {
                    w[j] = (j*dt - MLT[i])/(MLT[i+1]-MLT[i]);
                    X[j] = MLX[i]*(1-w[j])+MLX[i+1]*w[j];
                    Y[j] = MLY[i]*(1-w[j])+MLY[i+1]*w[j];
                }
            }
    }
TimeGPU = omp_get_wtime() - TimeGPU;
    Launch parameters:
    pgc++ -ta=tesla:managed:cuda9.0 -Minfo=accel -O4

现在GPU比CPU慢2倍

输出:

139: compute region reached 1 time
        139: kernel launched 1 time
            grid: [157]  block: [128]
             device time(us): total=425 max=425 min=425 avg=425
            elapsed time(us): total=509 max=509 min=509 avg=509
    139: data region reached 2 times
        139: data copyin transfers: 1
             device time(us): total=13 max=13 min=13 avg=13
    146: compute region reached 1 time
        146: kernel launched 1 time
            grid: [157]  block: [128]
             device time(us): total=13,173 max=13,173 min=13,173 avg=13,173
            elapsed time(us): total=13,212 max=13,212 min=13,212 avg=13,212

为什么与使用PGI_ACC_TIME = 1的输出相比,我的TimeGPU大2倍? (30ms vs 14ms)

1 个答案:

答案 0 :(得分:1)

我认为很多GPU时间都是由于内核的内存访问不佳所致。理想情况下,您希望向量访问连续数据。

“j”循环有多少次迭代?如果长于32,那么您可以尝试在其上添加“#pragma acc loop vector”,这样它将在向量之间并行化,为您提供更好的数据访问。

此外,您还有很多冗余内存提取。考虑将带有“i”索引的数组中的值设置为临时变量,以便从内存中仅提取一次值。