我正在修读关于数据科学中Python编程的EdX课程。当使用给定函数绘制我的线性回归模型的结果时,图形似乎非常偏离,所有散点都聚集在底部,回归线向上顶部。
我不确定定义的函数drawLine
是否不正确或者我的建模过程是错误的。
这里是定义的函数
def drawLine(model, X_test, y_test, title, R2):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(X_test, y_test, c='g', marker='o')
ax.plot(X_test, model.predict(X_test), color='orange', linewidth=1, alpha=0.7)
title += " R2: " + str(R2)
ax.set_title(title)
print(title)
print("Intercept(s): ", model.intercept_)
plt.show()
这是我写的代码
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn import linear_model
from sklearn.model_selection import train_test_split
matplotlib.style.use('ggplot') # Look Pretty
# Reading in data
X = pd.read_csv('Datasets/College.csv', index_col=0)
# Wrangling data
X.Private = X.Private.map({'Yes':1, 'No':0})
# Splitting data
roomBoard = X[['Room.Board']]
accStudent = X[['Accept']]
X_train, X_test, y_train, y_test = train_test_split(roomBoard, accStudent, test_size=0.3, random_state=7)
# Training model
model = linear_model.LinearRegression()
model.fit(X_train, y_train)
score = model.score(X_test, y_test)
# Visualise results
drawLine(model, X_test, y_test, "Accept(Room&Board)", score)
我使用的数据可以找到here
谢谢你的时间。
任何帮助或建议表示赞赏。
答案 0 :(得分:1)
在drawLine函数中,我将ax.scatter
更改为plt.scatter
。我还将roomBoard
和accStudent
更改为numpy数组而不是pandas.Series。最后,我改变了你如何更新"私人"列到
X.loc[:, "Private"] = X.Private.map({'Yes':1, 'No':0})
Pandas docs解释了我为何进行此更改。其他小变化是化妆品。
我得到以下工作:
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn import linear_model
from sklearn.model_selection import train_test_split
matplotlib.style.use('ggplot') # Look Pretty
# Reading in data
X = pd.read_csv('College.csv', index_col=0)
# Wrangling data
X.loc[:, "Private"] = X.Private.map({'Yes':1, 'No':0})
# Splitting data
roomBoard = X.loc[:, 'Room.Board'].values.reshape((len(X),1))
accStudent = X.loc[:, 'Accept'].values.reshape((len(X),1))
X_train, X_test, y_train, y_test = train_test_split(roomBoard, accStudent, test_size=0.3, random_state=7)
# Training model
model = linear_model.LinearRegression()
model.fit(X_train, y_train)
score = model.score(X_test, y_test)
# Visualise results
def drawLine(model, X_test, y_test, title, R2):
fig = plt.figure()
ax = fig.add_subplot(111)
plt.scatter(X_test, y_test, c='g', marker='o')
y_pred = model.predict(X_test)
plt.plot(X_test, y_pred, color='orange', linewidth=1, alpha=0.7)
title += " R2: " + str(R2)
ax.set_title(title)
print(title)
print("Intercept(s): ", model.intercept_)
plt.xticks(())
plt.yticks(())
plt.show()
drawLine(model, X_test, y_test, "Accept(Room&Board)", score)