我一直在stackoverflow上关注一些例子来更新我的情节,并选择'小部件。当我通过anaconda shell运行.py文件时,我会看到情节并选择'小部件。不知何故,我的情节不会更新情节。我必须说数据集有大约11000行(我不知道这是否相关)。我看到一个话题,将数据框转换为字典帮助某人使交互工作。所以我用以下代码做到了:
>>> kwarg = {'name': 'John'}
>>> kwarg['name']
'John'
>>> kwarg['age']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'age'
>>>
>>> kwarg.get('age', 25)
25
现在我已经制作了词典,我使用以下代码制作了剧情:
from bokeh.layouts import row, column, widgetbox
from bokeh.plotting import figure, show, output_file, ColumnDataSource
from bokeh.models.widgets import Select
from bokeh.io import curdoc, show
df = pd.read_excel('data.xlsx')
d1 = df.to_dict()
d2 = df[['Polarity', 'Subjectivity']].loc[df['Subject'] == 'compliment'].to_dict()
d3 = df[['Polarity', 'Subjectivity']].loc[df['Subject'] == 'complaint'].to_dict()
d4 = df[['Polarity', 'Subjectivity']].loc[df['Subject'] == 'infrastructure'].to_dict()
d5 = df[['Polarity', 'Subjectivity']].loc[df['Subject'] == 'autority'].to_dict()
d6 = df[['Polarity', 'Subjectivity']].loc[df['Subject'] == 'finance'].to_dict()
d7 = df[['Polarity', 'Subjectivity']].loc[df['Subject'] == 'english'].to_dict()
d8 = df[['Polarity', 'Subjectivity']].loc[df['Subject'] == 'danger'].to_dict()
d9 = df[['Polarity', 'Subjectivity']].loc[df['Subject'] == 'health'].to_dict()
d10 = df[['Polarity', 'Subjectivity']].loc[df['Subject'] == 'sport'].to_dict()
d11 = df[['Polarity', 'Subjectivity']].loc[df['Subject'] == 'remaining'].to_dict()
经过多次不同尝试后,我仍然无法完成互动。我做错了什么?
答案 0 :(得分:1)
由于您还没有提供数据,我使用此代码创建了虚拟数据 -
import pandas as pd
import random
list_type = ['All', 'Compliment', 'Sport', 'Remaining', 'Finance', 'Infrastructure', 'Complaint', 'Authority',
'Danger', 'Health', 'English']
df = pd.concat([pd.DataFrame({'Subject' : [list_type[i] for t in range(110)],
'Polarity' : [random.random() for t in range(110)],
'Subjectivity' : [random.random() for t in range(110)]}) for i in range(len(list_type))], axis=0)
您需要使用与图表关联的数据源。您可以使用简单的函数来操作数据框,创建columndatasource并更改图表后面的数据 -
options = []
options.append('All')
options.extend(df['Subject'].unique().tolist())
source = ColumnDataSource(df)
p = figure()
r = p.circle(x='Polarity', y='Subjectivity', source = source)
select = Select(title="Subject", options=options, value="All")
output_notebook()
def update_plot(attr, old, new):
if select.value=="All":
df_filter = df.copy()
else:
df_filter = df[df['Subject']==select.value]
source1 = ColumnDataSource(df_filter)
r.data_source.data = source1.data
select.on_change('value', update_plot)
layout = column(row(select, width=400), p)
#show(layout)
curdoc().add_root(layout)