我正在实施How to perform bilinear interpolation in Python
中的双线性插值我有一个排序的点列表,它是我常规网格的顶点。
[[x1,y1,z1],[x2,y2,z2],[x3,y3,z3],[x4,y4,z4],[x5,y5,z5],...]
我想在点(x,y)
上线性插值。我写了以下代码
def f(x, y, points):
for i in range(len(points)-1, -1, -1):
if (x>points[i][0])and(y>points[i][1]):
break
try:
pp = [points[i], points[i+1]]
except IndexError:
pp = [points[i], points[i-1]]
for j in range(len(points)):
if (x<points[j][0])and(y<points[j][1]):
break
pp.append(points[j-1])
pp.append(points[j])
(x1, y1, q11), (_x1, y2, q12), (x2, _y1, q21), (_x2, _y2, q22) = pp
return (q11 * (x2 - x) * (y2 - y) +
q21 * (x - x1) * (y2 - y) +
q12 * (x2 - x) * (y - y1) +
q22 * (x - x1) * (y - y1)) / ((x2 - x1) * (y2 - y1))
但是这段代码并没有在边界上工作。我认为这是插值中的常见问题,所以我想知道如何从常规网格中选择(x,y)周围最小的点矩形。
答案 0 :(得分:0)
您的网格是常规的,因此您不需要遍历所有点来确定单元格索引。只需按小区大小划分坐标,将圆形结果划分为较小的整数。 1D示例:如果第一个点的坐标为1且单元格大小为2,则第6个点位于int (6-1)/2 = 2
- nd interval
限制结果索引以确保它处于网格限制中 - 因此网格外部的点将使用边框单元格
i = int((x - points[i][0]) / xsize) #not sure what is the best way in Python
if (i < 0):
i = 0
if (i >= XCount):
i = XCount - 1
// same for j and y-coordinate
答案 1 :(得分:0)
根据评论中的建议,我写了以下代码:
def f(x, y, points):
points = sorted(points)
xunique = np.unique([point[0] for point in points])
yunique = np.unique([point[1] for point in points])
xmax = np.max(xunique)
ymax = np.max(yunique)
deltax = xunique[1] - xunique[0]
deltay = yunique[1] - yunique[0]
x0 = xunique[0]
y0 = yunique[0]
ni = len(xunique)
nj = len(yunique)
i1 = int(np.floor((x-x0)/deltax))
if i1 == ni:
i1 = i1 - 1
i2 = int(np.ceil((x-x0)/deltax))
if i2 == ni:
i2 = i2 - 1
j1 = int(np.floor((y-y0)/deltay))
if j1 == nj:
j1 = j1 - 1
j2 = int(np.ceil((y-y0)/deltay))
if j2 == ni:
j2 = j2 - 1
pp=[]
if (i1==i2):
if i1>0:
i1=i1-1
else:
i2=i2+1
if (j1==j2):
if j1>0:
j1=j1-1
else:
j2=j2+1
pp=[points[i1 * nj + j1], points[i1 * nj + j2],
points[i2 * nj + j1], points[i2 * nj + j2]]
(x1, y1, q11), (_x1, y2, q12), (x2, _y1, q21), (_x2, _y2, q22) = pp
return (q11 * (x2 - x) * (y2 - y) +
q21 * (x - x1) * (y2 - y) +
q12 * (x2 - x) * (y - y1) +
q22 * (x - x1) * (y - y1)) / ((x2 - x1) * (y2 - y1))