这是我的数据框:
user1 user2 cat quantity + other quantities
----------------------------------------------------
Alice Bob 0 ....
Alice Bob 1 ....
Alice Bob 2 ....
Alice Carol 0 ....
Alice Carol 2 ....
我想确保每个user1-user2
对都有一个对应于每个类别的行(有三个:0,1,2)。如果没有,我想插入一行,并将其他列设置为零。
user1 user2 cat quantity + other quantities
----------------------------------------------------
Alice Bob 0 ....
Alice Bob 1 ....
Alice Bob 2 ....
Alice Carol 0 ....
Alice Carol 1 <SET ALL TO ZERO>
Alice Carol 2 ....
到目前为止,我所拥有的user1-user2
列表中cat
的值少于3个:
df.groupby(['user1','user2']).agg({'cat':'count'}).reset_index()[['user1','user2']]
我可以迭代这些用户,但这需要很长时间(有大约1M的这样的对)。我已根据某些条件(例如Pandas/Python adding row based on condition和Insert row in Pandas Dataframe based on a condition)检查其他解决方案是否在大熊猫中插入行,但它们并不完全相同。
此外,由于这是一个庞大的数据集,因此必须对解决方案进行矢量化。我该怎么办?
答案 0 :(得分:2)
set_index
使用reindex
MultiIndex.from_product
:
print (df)
user1 user2 cat quantity a
0 Alice Bob 0 2 4
1 Alice Bob 1 3 4
2 Alice Bob 2 4 4
3 Alice Carol 0 6 4
4 Alice Carol 2 3 4
df = df.set_index(['user1','user2', 'cat'])
mux = pd.MultiIndex.from_product(df.index.levels, names=df.index.names)
df = df.reindex(mux, fill_value=0).reset_index()
print (df)
user1 user2 cat quantity a
0 Alice Bob 0 2 4
1 Alice Bob 1 3 4
2 Alice Bob 2 4 4
3 Alice Carol 0 6 4
4 Alice Carol 1 0 0
5 Alice Carol 2 3 4
另一种解决方案是根据列的唯一值和Dataframe
与merge
联接的所有组合创建新的right
:
from itertools import product
df1 = pd.DataFrame(list(product(df['user1'].unique(),
df['user2'].unique(),
df['cat'].unique())), columns=['user1','user2', 'cat'])
df = df.merge(df1, how='right').fillna(0)
print (df)
user1 user2 cat quantity a
0 Alice Bob 0 2.0 4.0
1 Alice Bob 1 3.0 4.0
2 Alice Bob 2 4.0 4.0
3 Alice Carol 0 6.0 4.0
4 Alice Carol 2 3.0 4.0
5 Alice Carol 1 0.0 0.0
EDIT2:
df['user1'] = df['user1'] + '_' + df['user2']
df = df.set_index(['user1', 'cat']).drop('user2', 1)
mux = pd.MultiIndex.from_product(df.index.levels, names=df.index.names)
df = df.reindex(mux, fill_value=0).reset_index()
df[['user1','user2']] = df['user1'].str.split('_', expand=True)
print (df)
user1 cat quantity a user2
0 Alice 0 2 4 Bob
1 Alice 1 3 4 Bob
2 Alice 2 4 4 Bob
3 Alice 0 6 4 Carol
4 Alice 1 0 0 Carol
5 Alice 2 3 4 Carol
EDIT3:
cols = df.columns.difference(['user1','user2'])
df = (df.groupby(['user1','user2'])[cols]
.apply(lambda x: x.set_index('cat').reindex(df['cat'].unique(), fill_value=0))
.reset_index())
print (df)
user1 user2 cat a quantity
0 Alice Bob 0 4 2
1 Alice Bob 1 4 3
2 Alice Bob 2 4 4
3 Alice Carol 0 4 6
4 Alice Carol 1 0 0
5 Alice Carol 2 4 3