我有以下代码:
def constraint(params):
if abs(params[0] - 15) < 2 and abs(params[1] + 10) < 2:
return -1
else:
return 0
def f(params):
x, z = params
if abs(x - 15) < 2 and abs(z + 10) < 2:
return -9999999
return (x - 15) ** 2 + (z + 10) ** 2 * numpy.sqrt(numpy.abs(numpy.sin(x)))
# Last: 15.00024144, -9.99939634
result = optimize.minimize(f, (-15, -15),
bounds=((-15.01, 15.01,), (-15.01, 15.01,),),
method="SLSQP",
options={'maxiter': 1024 * 1024},
jac=False,
constraints={
'type': 'ineq',
'fun': constraint,
})
print(result)
print(f(result.x))
它给出了以下结果:
fun: -9999999.0
jac: array([0., 0.])
message: 'Optimization terminated successfully.'
nfev: 12
nit: 7
njev: 3
status: 0
success: True
x: array([ 15.01 , -11.60831378])
-9999999
应该通过约束删除给定值[ 15.01, -11.60831378]
(它们是:如果我添加更详细的日志记录,我看到constraint
函数返回-1
,但scipy忽略它。为什么呢?
我离数据科学和数学很远,所以如果他们在那里我会感到愚蠢的错误。
答案 0 :(得分:3)
为了帮助算法找到正确的方向,您需要分离约束:
def f(params):
print(params)
x, z = params
if abs(x - 15) < 2 and abs(z + 10) < 2:
return -9999999
return (x - 15) ** 2 + (z + 10) ** 2 * numpy.sqrt(numpy.abs(numpy.sin(x)))
# Last: 15.00024144, -9.99939634
result = optimize.minimize(f, (-15, -15),
bounds=((-15.01, 15.01,), (-15.01, 15.01,),),
method="SLSQP",
options={'disp':True, 'maxiter': 1024 * 1024},
jac=False,
constraints=({
'type': 'ineq',
'fun': lambda params : abs(params[0] - 15) -2,
},
{
'type': 'ineq',
'fun': lambda params : abs(params[1] + 10) -2,
},)
)
print(result)
print(f(result.x))
给出:
Optimization terminated successfully. (Exit mode 0)
Current function value: 6.5928117149596535
Iterations: 6
Function evaluations: 24
Gradient evaluations: 6
fun: 6.5928117149596535
jac: array([-1.2001152, 2.5928117])
message: 'Optimization terminated successfully.'
nfev: 24
nit: 6
njev: 6
status: 0
success: True
x: array([13., -8.])
[13. -8.]
6.5928117149596535
宾果!