对于人口稀疏的密钥列表,我需要一个64位到16位的完美哈希函数。
我在python中有一个字典,它有48326个长度为64位的密钥。我想为这个键列表创建一个最小完美哈希。 (我不想等待几天来计算MPH,所以我也可以将它映射到16位哈希)
目标是最终将此字典移植到C作为包含dict值的数组,并且索引由最小完美散列函数计算,该函数将键作为输入。我不能在我正在构建的应用程序的C端口中使用外部散列库
问题: 是否有任何python库将我的键作为输入,并为我提供散列参数和(基于用于散列的定义算法)作为输出。
我找到了一个库perfection 2.0.0,但由于我的密钥是64位格式,所以它只是挂起了。 (即使我在2000个键的子集上测试它)
修改 正如评论中所建议的,我查看了Steve Hanov's Algo并修改了哈希函数以获取64位整数(根据此wiki page更改FNV Prime和偏移的值)
当我得到结果时,遗憾的是地图返回-ve索引值,而我可以使它工作,这意味着我必须通过检查-ve index
为哈希计算添加另外4个周期想避免这个
答案 0 :(得分:3)
就个人而言,我只是使用gperf
生成一个表格,或者使用CMPH生成一个包含大量密钥的表格,然后完成。
如果你必须在Python中这样做,那么我发现this blog post有一些Python 2代码,它非常有效地使用中间表将 string 键转换为最小完美哈希。
根据您的要求调整帖子中的代码,在0.35秒内为50k项目生成最小的完美哈希:
>>> import random
>>> testdata = {random.randrange(2**64): random.randrange(2**64)
... for __ in range(50000)} # 50k random 64-bit keys
>>> import timeit
>>> timeit.timeit('gen_minimal_perfect_hash(testdata)', 'from __main__ import gen_minimal_perfect_hash, testdata', number=10)
3.461486832005903
我所做的改变:
int.to_bytes()
改编的代码:
# Easy Perfect Minimal Hashing
# By Steve Hanov. Released to the public domain.
# Adapted to Python 3 best practices and 64-bit integer keys by Martijn Pieters
#
# Based on:
# Edward A. Fox, Lenwood S. Heath, Qi Fan Chen and Amjad M. Daoud,
# "Practical minimal perfect hash functions for large databases", CACM, 35(1):105-121
# also a good reference:
# Compress, Hash, and Displace algorithm by Djamal Belazzougui,
# Fabiano C. Botelho, and Martin Dietzfelbinger
from itertools import count, groupby
def fnv_hash_int(value, size, d=0x811c9dc5):
"""Calculates a distinct hash function for a given 64-bit integer.
Each value of the integer d results in a different hash value. The return
value is the modulus of the hash and size.
"""
# Use the FNV algorithm from http://isthe.com/chongo/tech/comp/fnv/
# The unsigned integer is first converted to a 8-character byte string.
for c in value.to_bytes(8, 'big'):
d = ((d * 0x01000193) ^ c) & 0xffffffff
return d % size
def gen_minimal_perfect_hash(dictionary, _hash_func=fnv_hash_int):
"""Computes a minimal perfect hash table using the given Python dictionary.
It returns a tuple (intermediate, values). intermediate and values are both
lists. intermediate contains the intermediate table of indices needed to
compute the index of the value in values; a tuple of (flag, d) is stored, where
d is either a direct index, or the input for another call to the hash function.
values contains the values of the dictionary.
"""
size = len(dictionary)
# Step 1: Place all of the keys into buckets
buckets = [[] for __ in dictionary]
intermediate = [(False, 0)] * size
values = [None] * size
for key in dictionary:
buckets[_hash_func(key, size)].append(key)
# Step 2: Sort the buckets and process the ones with the most items first.
buckets.sort(key=len, reverse=True)
# Only look at buckets of length greater than 1 first; partitioned produces
# groups of buckets of lengths > 1, then those of length 1, then the empty
# buckets (we ignore the last group).
partitioned = (g for k, g in groupby(buckets, key=lambda b: len(b) != 1))
for bucket in next(partitioned, ()):
# Try increasing values of d until we find a hash function
# that places all items in this bucket into free slots
for d in count(1):
slots = {}
for key in bucket:
slot = _hash_func(key, size, d=d)
if values[slot] is not None or slot in slots:
break
slots[slot] = dictionary[key]
else:
# all slots filled, update the values table; False indicates
# these values are inputs into the hash function
intermediate[_hash_func(bucket[0], size)] = (False, d)
for slot, value in slots.items():
values[slot] = value
break
# The next group is buckets with only 1 item. Process them more quickly by
# directly placing them into a free slot.
freelist = (i for i, value in enumerate(values) if value is None)
for bucket, slot in zip(next(partitioned, ()), freelist):
# These are 'direct' slot references
intermediate[_hash_func(bucket[0], size)] = (True, slot)
values[slot] = dictionary[bucket[0]]
return (intermediate, values)
def perfect_hash_lookup(key, intermediate, values, _hash_func=fnv_hash_int):
"Look up a value in the hash table defined by intermediate and values"
direct, d = intermediate[_hash_func(key, len(intermediate))]
return values[d if direct else _hash_func(key, len(values), d=d)]
以上产生两个列表,每个列表有50k个条目;第一个表中的值是(boolean, integer)
个元组,其中整数的范围为[0, tablesize)
(理论上,这些值的范围可以达到2 ^ 16但是如果它花费了65k +,我会非常惊讶试图找到您的数据的插槽安排。你的桌子大小是< 50k,因此上述安排可以将此列表中的条目以4个字节(bool
和short
生成3,但alignment rules添加一个字节填充)表示为C阵列。
快速测试以查看哈希表是否正确并再次生成正确的输出:
>>> tables = gen_minimal_perfect_hash(testdata)
>>> for key, value in testdata.items():
... assert perfect_hash_lookup(key, *tables) == value
...
您只需要在C:
中实现查找功能fnv_hash_int
操作可以获取指向64位整数的指针,然后将该指针强制转换为8位值数组,并将索引递增8次以访问每个单独的字节;使用suitable function to ensure big-endian (network) order。0xffffffff
进行掩码,因为无论如何都会自动丢弃C整数值上的溢出。len(intermediate) == len(values) == len(dictionary)
并且可以在常量中捕获。flag
为bool
,d
为无符号short
;这只是3个字节,加上1个填充字节在4字节边界上对齐。 values
数组中的数据类型取决于输入字典中的值。如果你原谅我的C技能,这里有一个示例实现:
mph_table.h
#include "mph_generated_table.h"
#include <arpa/inet.h>
#include <stdint.h>
#ifndef htonll
// see https://stackoverflow.com/q/3022552
#define htonll(x) ((1==htonl(1)) ? (x) : ((uint64_t)htonl((x) & 0xFFFFFFFF) << 32) | htonl((x) >> 32))
#endif
uint64_t mph_lookup(uint64_t key);
mph_table.c
#include "mph_table.h"
#include <stdbool.h>
#include <stdint.h>
#define FNV_OFFSET 0x811c9dc5
#define FNV_PRIME 0x01000193
uint32_t fnv_hash_modulo_table(uint32_t d, uint64_t key) {
d = (d == 0) ? FNV_OFFSET : d;
uint8_t* keybytes = (uint8_t*)&key;
for (int i = 0; i < 8; ++i) {
d = (d * FNV_PRIME) ^ keybytes[i];
}
return d % TABLE_SIZE;
}
uint64_t mph_lookup(uint64_t key) {
_intermediate_entry entry =
mph_tables.intermediate[fnv_hash_modulo_table(0, htonll(key))];
return mph_tables.values[
entry.flag ?
entry.d :
fnv_hash_modulo_table((uint32_t)entry.d, htonll(key))];
}
将依赖于生成的头文件,该文件来自:
from textwrap import indent
template = """\
#include <stdbool.h>
#include <stdint.h>
#define TABLE_SIZE %(size)s
typedef struct _intermediate_entry {
bool flag;
uint16_t d;
} _intermediate_entry;
typedef struct mph_tables_t {
_intermediate_entry intermediate[TABLE_SIZE];
uint64_t values[TABLE_SIZE];
} mph_tables_t;
static const mph_tables_t mph_tables = {
{ // intermediate
%(intermediate)s
},
{ // values
%(values)s
}
};
"""
tables = gen_minimal_perfect_hash(dictionary)
size = len(dictionary)
cbool = ['false, ', 'true, ']
perline = lambda i: zip(*([i] * 10))
entries = (f'{{{cbool[e[0]]}{e[1]:#06x}}}' for e in tables[0])
intermediate = indent(',\n'.join([', '.join(group) for group in perline(entries)]), ' ' * 8)
entries = (format(v, '#018x') for v in tables[1])
values = indent(',\n'.join([', '.join(group) for group in perline(entries)]), ' ' * 8)
with open('mph_generated_table.h', 'w') as generated:
generated.write(template % locals())
其中dictionary
是您的输入表。
使用gcc -O3
编译,内联哈希函数(循环展开),整个mph_lookup
函数以300 CPU指令计时。我生成的所有50k随机密钥的快速基准测试表明,我的2.9 GHz英特尔酷睿i7笔记本电脑每秒可以查找5000万个这些按键值(每个按键0.02微秒)。