如何分别替换每个组的缺失值?
可重复的例子:
mydata=structure(list(group1 = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), group.2 = c(1L,
2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
2L, 1L, 2L, 1L, 2L), x1 = c(20L, 4L, 91L, NA, 94L, 69L, 38L,
NA, 29L, 69L, 55L, 86L, 81L, 11L, NA, 12L, 65L, 90L, 74L, NA,
49L, 90L), x2 = c(44L, 94L, NA, 1L, 67L, NA, 73L, 22L, 44L, 24L,
NA, 54L, 70L, 65L, 97L, 10L, 97L, NA, 74L, 97L, 34L, 29L)), class = "data.frame", row.names = c(NA,
-22L))
现在我找到了如何在没有组的情况下替换缺失值。
library(dplyr)
mydata %>% mutate_at(vars(starts_with("x1")), funs(ifelse(is.na(.) & is.numeric(.) ,mean(., na.rm = TRUE),.)))
但我需要分别替换每个组(group1,group2)。
structure(list(group1 = c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L), group.2 = c(1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L,
2L, 2L, 2L), x1 = c(63L, 67L, 57L, NA, 65L, 75L, 57L, 80L, 42L,
NA, 35L, 80L), x2 = c(46L, 1L, NA, 41L, 80L, NA, 74L, 73L, NA,
13L, 83L, NA)), class = "data.frame", row.names = c(NA, -12L))
答案 0 :(得分:1)
mydata=structure(list(group1 = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), group2 = c(1L,
2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
2L, 1L, 2L, 1L, 2L), x1 = c(20L, 4L, 91L, NA, 94L, 69L, 38L,
NA, 29L, 69L, 55L, 86L, 81L, 11L, NA, 12L, 65L, 90L, 74L, NA,
49L, 90L), x2 = c(44L, 94L, NA, 1L, 67L, NA, 73L, 22L, 44L, 24L,
NA, 54L, 70L, 65L, 97L, 10L, 97L, NA, 74L, 97L, 34L, 29L)), class = "data.frame", row.names = c(NA,
-22L))
library(tidyverse)
mydata %>%
unite(group, group1, group2) %>% # combine groups
mutate(id = row_number()) %>% # add the row number as an id (useful when reshaping)
gather(var, value, -group, -id) %>% # reshape data
group_by(group, var) %>% # for each group combination and variable
mutate(value = ifelse(is.na(value), mean(value, na.rm = T), value)) %>% # replace NAs with mean
spread(var, value) %>% # reshape again
arrange(id) %>% # keep order of original dataset
select(-id) %>% # remove id
ungroup() %>% # forget the grouping
separate(group, c("group1","group2")) # split the groups again
# # A tibble: 22 x 4
# group1 group2 x1 x2
# <chr> <chr> <dbl> <dbl>
# 1 1 1 20 44
# 2 1 2 4 94
# 3 1 1 91 61.3
# 4 1 2 36.5 1
# 5 1 1 94 67
# 6 1 2 69 39
# 7 1 1 38 73
# 8 1 2 36.5 22
# 9 2 1 29 44
# 10 2 2 69 24
# # ... with 12 more rows