指数衰减适合于r

时间:2018-05-24 13:35:41

标签: r statistics model-fitting function-fitting

我想在R中将指数衰减函数拟合为以下数据:

data <- structure(list(x = 0:38, y = c(0.991744340878828, 0.512512332368168, 
0.41102449265681, 0.356621905557202, 0.320851602373477, 0.29499198506227, 
0.275037747162642, 0.25938850981822, 0.245263623938863, 0.233655093612007, 
0.224041426946405, 0.214152907133301, 0.207475138903635, 0.203270738895484, 
0.194942528735632, 0.188107106969046, 0.180926819430008, 0.177028560207711, 
0.172595416846822, 0.166729221891201, 0.163502461048814, 0.159286528409165, 
0.156110097827889, 0.152655498715612, 0.148684858095915, 0.14733605355542, 
0.144691873223729, 0.143118852619617, 0.139542186417186, 0.137730138713745, 
0.134353615271572, 0.132197800438632, 0.128369567159113, 0.124971834736476, 
0.120027536018095, 0.117678812415655, 0.115720611113327, 0.112491329844252, 
0.109219168085624)), class = "data.frame", row.names = c(NA, 
-39L), .Names = c("x", "y"))

我尝试过使用nls,但生成的曲线并不接近实际数据。

enter image description here

如果有人能解释如何使用这些非线性数据并找到最佳拟合函数,那将非常有帮助。

3 个答案:

答案 0 :(得分:3)

试试y ~ .lin / (b + x^c)。请注意,使用"plinear"时,在将公式指定为.lin时会忽略nls线性参数,并省略其初始值。

另请注意,.linb参数大约为1,因此我们也可以尝试使用单参数模型y ~ 1 / (1 + x^c)。这是单参数对数 - 逻辑生存曲线的形式。这个参数模型的AIC比3参数模型更差(比较AIC(fm1)AIC(fm3))但是由于其简约性和拟合在视觉上的事实,一个参数模型可能仍然是优选的与3参数模型无法区分。

opar <- par(mfcol = 2:1, mar = c(3, 3, 3, 1), family = "mono")

# data = data.frame with x & y col names; fm = model fit; main = string shown above plot
Plot <- function(data, fm, main) {
  plot(y ~ x, data, pch = 20)
  lines(fitted(fm) ~ x, data, col = "red")
  legend("topright", bty = "n", cex = 0.7, legend = capture.output(fm))
  title(main = paste(main, "- AIC:", round(AIC(fm), 2)))
}  

# 3 parameter model
fo3 <- y ~ 1/(b + x^c) # omit .lin parameter; plinear will add it automatically
fm3 <- nls(fo3, data = data, start = list(b = 1, c = 1), alg = "plinear")
Plot(data, fm3, "3 parameters")

# one parameter model
fo1 <- y ~ 1 / (1 + x^c)
fm1 <- nls(fo1, data, start = list(c = 1))
Plot(data, fm1, "1 parameter")

par(read.only = opar)

screenshot

AIC

在其他答案中添加解决方案,我们可以比较AIC值。我们已经根据它使用的参数数量标记了每个解决方案(自由度将大于1),并重新设计了对数日志解决方案以使用nls代替lm并拥有LHS由于使用的对数似然常数可能不同,因此无法比较具有不同左侧或使用不同优化程序的模型的AIC值。

fo2 <- y ~ exp(a + b * log(x+1))
fm2 <- nls(fo2, data, start = list(a = 1, b = 1))

fo4 <- y ~ SSbiexp(x, A1, lrc1, A2, lrc2)
fm4 <- nls(fo4, data)

aic <- AIC(fm1, fm2, fm3, fm4)
aic[order(aic$AIC), ]

从最佳AIC(即fm3)给予最差的AIC(即fm2):

    df     AIC
fm3  4 -329.35
fm1  2 -307.69
fm4  5 -215.96
fm2  3 -167.33

答案 1 :(得分:0)

data <- structure(list(x = 0:38, y = c(0.991744340878828, 0.512512332368168, 
0.41102449265681, 0.356621905557202, 0.320851602373477, 0.29499198506227, 
0.275037747162642, 0.25938850981822, 0.245263623938863, 0.233655093612007, 
0.224041426946405, 0.214152907133301, 0.207475138903635, 0.203270738895484, 
0.194942528735632, 0.188107106969046, 0.180926819430008, 0.177028560207711, 
0.172595416846822, 0.166729221891201, 0.163502461048814, 0.159286528409165, 
0.156110097827889, 0.152655498715612, 0.148684858095915, 0.14733605355542, 
0.144691873223729, 0.143118852619617, 0.139542186417186, 0.137730138713745, 
0.134353615271572, 0.132197800438632, 0.128369567159113, 0.124971834736476, 
0.120027536018095, 0.117678812415655, 0.115720611113327, 0.112491329844252, 
0.109219168085624)), class = "data.frame", row.names = c(NA, 
-39L), .Names = c("x", "y"))

# Do this because the log of 0 is not possible to calculate
data$x = data$x +1

fit = lm(log(y) ~ log(x), data = data)
plot(data$x, data$y)
lines(data$x, data$x ^ fit$coefficients[2], col = "red")

这比使用nls forumla要好得多。当绘制拟合似乎做得相当好。

答案 2 :(得分:0)

双指数模型更适合,但仍然不完美。这表明您可能同时有两个衰变过程。

fit <- nls(y ~ SSbiexp(x, A1, lrc1, A2, lrc2), data = data)
#A1*exp(-exp(lrc1)*x)+A2*exp(-exp(lrc2)*x)

plot(y ~x, data = data)
curve(predict(fit, newdata = data.frame(x)), add = TRUE)

resulting plot

如果测量误差取决于幅度,您可以考虑将其用于加权。

但是,您应该仔细考虑您对领域知识的期望。根据经验选择非线性模型通常不是一个好主意。非参数拟合可能是更好的选择。