我有一个Dataset<Row>
,它是Kafka readStream
的结果,如下面的Java代码片段所示。
m_oKafkaEvents = getSparkSession().readStream().format("kafka")
.option("kafka.bootstrap.servers", strKafkaAddress)
.option("subscribe", getInsightEvent().getTopic())
.option("maxOffsetsPerTrigger", "100000")
.option("startingOffsets", "latest")
.option("failOnDataLoss", false)
.load()
.select(functions.from_json(functions.col("value").cast("string"), oSchema).as("events"))
.select("events.*");
m_oKafkaEvents
{
{"EventTime":"1527005246864000000","InstanceID":"231","Model":"Opportunity_1","Milestone":"OrderProcessed"},
{"EventTime":"1527005246864000002","InstanceID":"232","Model":"Opportunity_2","Milestone":"OrderProcessed"},
{"EventTime":"1527005246864000001","InstanceID":"233","Model":"Opportunity_1","Milestone":"OrderProcessed"},
{"EventTime":"1527005246864000002","InstanceID":"234","Model":"Opportunity_2","Milestone":"OrderProcessed"}
}
我需要根据“模型”列拆分此数据集,这将导致两个数据集,如下所示;
m_oKafkaEvents_for_Opportunity_1_topic
{
{"EventTime":"1527005246864000000","InstanceID":"231","Model":"Opportunity_1","Milestone":"OrderProcessed"},
{"EventTime":"1527005246864000001","InstanceID":"233","Model":"Opportunity_1","Milestone":"OrderProcessed"}
}
m_oKafkaEvents_for_Opportunity_2_topic
{
{"EventTime":"1527005246864000002","InstanceID":"232","Model":"Opportunity_2","Milestone":"OrderProcessed"},
{"EventTime":"1527005246864000002","InstanceID":"234","Model":"Opportunity_2","Milestone":"OrderProcessed"}
}
这些数据集将发布到Kafka接收器中。主题名称将是模型值。即Opportunity_1
和Opportunity_2
因此,我需要一个句柄列“模型”值和相应的事件列表
由于我刚接触火花,我正在寻求帮助,了解如何通过java代码实现这一目标
感谢任何帮助。
答案 0 :(得分:0)
最简单的解决方案如下:
allEvents.selectExpr("topic", "CONCAT('m_oKafkaEvents_for_', Model, '_topic')")
.write()
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.save();
您可以在此处查看示例https://spark.apache.org/docs/2.2.0/structured-streaming-kafka-integration.html#writing-the-output-of-batch-queries-to-kafka。但在查看Spark的代码后,似乎我们只能有一个主题/写入,即它会选择第一个遇到的行作为主题:
def write(
sparkSession: SparkSession,
queryExecution: QueryExecution,
kafkaParameters: ju.Map[String, Object],
topic: Option[String] = None): Unit = {
val schema = queryExecution.analyzed.output
validateQuery(schema, kafkaParameters, topic)
queryExecution.toRdd.foreachPartition { iter =>
val writeTask = new KafkaWriteTask(kafkaParameters, schema, topic)
Utils.tryWithSafeFinally(block = writeTask.execute(iter))(
finallyBlock = writeTask.close())
}
你可以尝试这种方法,并告诉这里是否按上述方式工作?如果它不起作用,你有其他解决方案,如:
第一个解决方案非常容易实现,您可以使用所有Spark工具来实现。在另一方面,至少在理论上,拆分数据集应该比第二个提案略慢。但是在选择一个或另一个选项之前尝试衡量,可能差异将非常小,并且使用明确的社区认可方法总是更好。
您可以在下面找到显示这两种情况的代码:
SparkSession spark = SparkSession
.builder()
.appName("JavaStructuredNetworkWordCount")
.getOrCreate();
Dataset<Row> allEvents = spark.readStream().format("kafka")
.option("kafka.bootstrap.servers", "")
.option("subscribe", "event")
.option("maxOffsetsPerTrigger", "100000")
.option("startingOffsets", "latest")
.option("failOnDataLoss", false)
.load()
.select(functions.from_json(functions.col("value").cast("string"), null).as("events"))
.select("events.*");
// First solution
Dataset<Row> opportunity1Events = allEvents.filter("Model = 'Opportunity_1'");
opportunity1Events.write().format("kafka").option("kafka.bootstrap.servers", "")
.option("topic", "m_oKafkaEvents_for_Opportunity_1_topic").save();
Dataset<Row> opportunity2Events = allEvents.filter("Model = 'Opportunity_2'");
opportunity2Events.write().format("kafka").option("kafka.bootstrap.servers", "")
.option("topic", "m_oKafkaEvents_for_Opportunity_2_topic").save();
// Note: Kafka writer was added in 2.2.0 https://github.com/apache/spark/commit/b0a5cd89097c563e9949d8cfcf84d18b03b8d24c
// Another approach with iteration throughout messages accumulated within each partition
allEvents.foreachPartition(new ForeachPartitionFunction<Row>() {
private KafkaProducer<String, Row> localProducer = new KafkaProducer<>(new HashMap<>());
private final Map<String, String> modelsToTopics = new HashMap<>();
{
modelsToTopics.put("Opportunity_1", "m_oKafkaEvents_for_Opportunity_1_topic");
modelsToTopics.put("Opportunity_2", "m_oKafkaEvents_for_Opportunity_2_topic");
}
@Override
public void call(Iterator<Row> rows) throws Exception {
// If your message is Opportunity1 => add to messagesOpportunity1
// otherwise it goes to Opportunity2
while (rows.hasNext()) {
Row currentRow = rows.next();
// you can reformat your row here or directly in Spark's map transformation
localProducer.send(new ProducerRecord<>(modelsToTopics.get(currentRow.getAs("Model")),
"some_message_key", currentRow));
}
// KafkaProducer accumulates messages in a in-memory buffer and sends when a threshold was reached
// Flush them synchronously here to be sure that every stored message was correctly
// delivered
// You can also play with features added in Kafka 0.11: the idempotent producer and the transactional producer
localProducer.flush();
}
});