我试图了解在使用estat mfx
估算McFadden /条件logit模型后,Stata如何计算选择替代方案的概率和边际效应计算平均值asclogit
时的平均值。
例如:
asclogit H t, case(ID) alternatives(AQ) casevars(Medicaid) ///
basealternative(1) vce(cluster Medicaid)
estat mfx, varlist(Medicaid)
我的目标是通过使用clogit
估算相同模型并手动计算等效边际效应来重新创建结果。我能够使用asclogit
重现由clogit
生成的条件logit估计值,但是我很难再现后估计计算。
我无法重新生成所选择的每个备选项的计算概率,从阅读estat mfx
的文档我学到的是在表输出中标记为X
的值进行评估。
以下是estat
概率数字:
如果图片没有出来:
. matrix baseline = r(pr_1)\r(pr_2)\r(pr_3)\r(pr_4)\r(pr_5) . matrix list baseline baseline[5,1] c1 r1 .04077232 r2 .15206384 r3 .01232535 r4 .10465885 r5 .69017964
请记住,以Valpha
和VMedicaid
开头的变量是我为clogit
命令创建的特定于案例的变量。它们分别是医疗补助覆盖的拦截和指标。
这就是我所拥有的:
clogit H t Valpha* i.VMedicaid_2 i.VMedicaid_3 i.VMedicaid_4 i.VMedicaid_5 , /// group(ID) vce(cluster Medicaid) * Reproducing probability an alternative selected calculated by estat mfx // calculate covariate means to plug into probability calculations local V t Valpha* VMedicaid_* Medicaid foreach var of varlist `V' { summarize `var' scalar `var'_MN = r(mean) } // alternative specific ZB scalar zb = _b[t]*t_MN // numerators attempt 1 foreach j of numlist 2/5 { scalar XB`j' = exp(zb + (_b[Valpha_`j']*Valpha_`j'_MN) + /// (_b[1.VMedicaid_`j']*VMedicaid_`j'_MN)) di "this is `j': " XB`j' } // numerators attempt 2, documentation for estat mfx said that probably was // evaluated with Medicaid= 0.68 which is the Medicaid coverage rate across cases // rather than the mean of the various VMedicaid_ variables are used to estimate // clogit. Replaced intercept mean with 1 foreach j of numlist 2/5 { scalar XB`j' = exp(zb + (_b[Valpha_`j']) + (_b[1.VMedicaid_`j' *Medicaid_MN)) di "this is `j': " XB`j' } scalar XB1 =exp(zb) // denominator scalar DNM = XB1+ XB2+ XB3+ XB4 + XB5 // Baseline foreach j of numlist 1/5 { scalar PRB`j' = XB`j'/DNM di "The probability of choosing hospital `j' is: " PRB`j' }
我得到的结果如下:
The probability of choosing hospital 1 is: .14799075
The probability of choosing hospital 2 is: .21019437
The probability of choosing hospital 3 is: .09046377
The probability of choosing hospital 4 is: .18383085
The probability of choosing hospital 5 is: .36752026