好吧,我有3个numpy矩阵:
m1 = [[ 3 2 2 ... 2 2 3]
[ 3 2 2 ... 3 3 2]
[500 501 502 ... 625 626 627]
...
[623 624 625 ... 748 749 750]
[624 625 626 ... 749 750 751]
[625 626 627 ... 750 751 752]]
m2 = [[ 3 2 500 ... 623 624 625]
[ 3 2 500 ... 623 624 625]
[ 2 3 500 ... 623 624 625]
...
[ 2 2 500 ... 623 624 625]
[ 2 2 500 ... 623 624 625]
[ 3 2 500 ... 623 624 625]]
m3 = [[ 813 827 160500 ... 199983 200304 200625]
[ 830 843 164000 ... 204344 204672 205000]
[ 181317 185400 36064000 ... 44935744 45007872 45080000]
...
[ 221046 225867 43936000 ... 54744256 54832128 54920000]
[ 221369 226196 44000000 ... 54824000 54912000 55000000]
[ 221692 226525 44064000 ... 54903744 54991872 55080000]]
m1,m2和m3是非常大的方形矩阵(这些示例是128x128,但它们可以达到2048x2048)。也是m1 * m2 = m3。
我的目标是仅使用m1和m3获得m2。有人告诉我这是可能的,因为m1 * m2 = m3意味着(m1 ** - 1)* m3 = m2(我相信就是这样,如果我错了,请纠正我);所以我计算了m1的倒数:
m1**-1 = [[ 7.70884284e-01 -8.13188394e-01 -1.65131146e+13 ... -2.49697170e+12
-7.70160676e+12 -4.13395320e+13]
[-3.38144598e-01 2.54532610e-01 1.01286404e+13 ... -3.64296085e+11
2.60327813e+12 2.41783491e+13]
[ 1.77721050e-01 -3.54566231e-01 -5.00564604e+12 ... 5.82415184e+10
-5.98354744e+11 -1.29817153e+13]
...
[-6.56772812e-02 1.54498025e-01 3.21826474e+12 ... 2.61432526e+11
1.14203762e+12 3.61036457e+12]
[ 5.82732587e-03 -3.44252762e-02 -4.79430664e+11 ... 5.10855381e+11
-1.07679881e+11 -1.71485373e+12]
[ 6.55360708e-02 -8.24446025e-02 -1.19618881e+12 ... 4.45713678e+11
-3.48073716e+11 -4.89344092e+12]]
结果看起来相当混乱所以我跑了一个测试并乘以m1 ** - 1和m1看看它是否有效:
(m1**-1)*m1 = [[-125.296875 , -117.34375 , -117.390625 , ..., -139.15625 ,
-155.203125 , -147.25 ],
[ 483.1640625 , 483.953125 , 482.7421875 , ..., 603.796875 ,
590.5859375 , 593.375 ],
[-523.22851562, -522.36328125, -523.49804688, ..., -633.07421875,
-635.20898438, -637.34375 ],
...,
[ 10.58691406, 11.68945312, 10.29199219, ..., 14.40429688,
13.00683594, 11.609375 ],
[ -5.32177734, -5.47949219, -4.63720703, ..., -5.28613281,
-5.31884766, -5.6015625 ],
[ -4.93554688, -3.58984375, -3.24414062, ..., -8.72265625,
-5.37695312, -8.03125 ]]
结果与预期结果不同(单位矩阵)。我的猜测是m1太大了,导致数值不精确。但是如果先前的计算得到一个单位矩阵不能正常工作,那么(m1 ** - 1)* m3肯定不会(并且它没有)。 但我真的不能减少m1,m2和m3的矩阵大小,事实上我希望它能用更大的尺寸(如前所述,最大尺寸为2048x2048)。
这样的计算会有更精确的方法吗?是否有替代方案可以用于更大的矩阵?
答案 0 :(得分:0)
你是对的,反转大矩阵可能效率低,数值不稳定。幸运的是,线性代数中有一些方法可以解决这个问题,而不需要逆。
在这种情况下,m2 = np.linalg.solve(m1, m3)
有效。