我有一个函数应该采用一些原始数据,将其绘制到画布上,然后填充基线和预定义峰值之间的区域,这对于高Y值很有效,但是当得到相反的结果时使用低Y值。我的问题是双重的:
段:
X = [16.08278,16.090878,16.098978,16.107077,16.115177,16.123279,16.13138,16.139482,16.147586,16.155689,16.163793,16.171899,16.180004,16.18811,16.196218,16.204325,16.212433,16.220543,16.228652,16.236762,16.244874,16.252985,16.261097,16.269211,16.277324,16.285439,16.293554,16.30167,16.309786,16.317904,16.326021,16.334139,16.342259,16.350379,16.358499,16.366621,16.374742]
Y = [1.496555,1.766111,2.074339,2.426317,2.825952,3.274024,3.764088,4.288722,4.839724,5.406741,5.978055,6.536869,7.064041,7.540824,7.948076,8.267242,8.48543,8.596198,8.598762,8.492928,8.279867,7.962899,7.55062,7.059239,6.508092,5.91964,5.318298,4.7234,4.148229,3.602356,3.094568,2.635609,2.231337,1.882143,1.58295,1.328678,1.113859]
Y2 = [1496555,1766111,2074339,2426317,2825952,3274024,3764088,4288722,4839724,5406741,5978055,6536869,7064041,7540824,7948076,8267242,8485430,8596198,8598762,8492928,8279867,7962899,7550620,7059239,6508092,5919640,5318298,4723400,4148229,3602356,3094568,2635609,2231337,1882143,1582950,1328678,1113859]
# Toggle low vs high Y-values
#Y = Y2
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import InterpolatedUnivariateSpline
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111)
plt.plot(X, Y, 'b-')
plt.legend(['Raw Data'], loc='best')
plt.xlabel("Retention Time [m]")
plt.ylabel("Intensity [au]")
newTime = np.linspace(X[0], X[-1], len(X))
f = InterpolatedUnivariateSpline(X, Y)
newIntensity = f(newTime)
ax.fill_between(X, newTime, newIntensity, alpha=0.5)
plt.show(fig)
这产生以下数字:
答案 0 :(得分:1)
我很抱歉这么快回答我自己的问题,但我注意到我在最初实现这个以前从未提出过的问题时犯了一个错误,因为我总是有高强度数据。
ax.fill_between
期望x
,y1
和y2
,并且对于高Y值数据,它开始填充区域不是从0开始,而是从X-开始值。由于尺度差异,这并不是显而易见的,只有在切换到低Y值后才变得明显。只需将ax.fill_between(X, newTime, newIntensity, alpha=0.5)
更改为ax.fill_between(X, 0, newIntensity, alpha=0.5)
即可获得预期结果。