sharey ='row'和sharey ='True'之间的区别

时间:2018-05-20 21:14:22

标签: matplotlib subplot

我正在考虑一个包含3行和4列的图,其中:

有4个因变量可以绘制:Y1Y2Y3,而不是常见的X自变量,用于4个案例研究:

enter image description here

在这种情况下有:

1)从ycase i时共享case i+1

2)在x

内共享case i

因此,原则上,人们会认为以下代码将产生所需的图(结果显示在上图中):

fig, axes = plt.subplots(ncols=4, nrows=3,\
                         sharex=True, sharey=True,\
                         subplot_kw=dict(adjustable='box-forced'))

其中adjustable='box-forced'只是为了确保子图的平方,如here所述。

当我尝试为案例1绘制Y1X时:

import numpy as np
import matplotlib.pyplot as plt
import sys

fig, axes = plt.subplots(ncols=4, nrows=3,\
                         sharex=True, sharey=True,\
                         subplot_kw=dict(adjustable='box-forced'))

pad = 5
axes[0][0].annotate('Case 1', xy=(0.5, 1), xytext=(0, pad),
                xycoords='axes fraction', textcoords='offset points',
                 size='large', ha='center', va='baseline')

axes[0][1].annotate('Case 2', xy=(0.5, 1), xytext=(0, pad),
                xycoords='axes fraction', textcoords='offset points',
                 size='large', ha='center', va='baseline')

axes[0][2].annotate('Case 3', xy=(0.5, 1), xytext=(0, pad),
               xycoords='axes fraction', textcoords='offset points',
                size='large', ha='center', va='baseline')

axes[0][3].annotate('Case 4', xy=(0.5, 1), xytext=(0, pad),
                xycoords='axes fraction', textcoords='offset points',
                 size='large', ha='center', va='baseline')

#
axes[0][0].set_ylabel('Y1', fontsize=10)
axes[1][0].set_ylabel('Y2', fontsize=10)
axes[2][0].set_ylabel('Y3', fontsize=10)

E_C_I =  np.array([-941.23658347, -941.23685494, -941.23467666])
V_C_I =  np.array([ 61.66341, 62.342903,  67.9311515])
E_14 =  np.array([-941.22938469, -941.23583586, -941.23605613])
V_14 =  np.array([ 54.65693125,  58.47115725, 60.8626545 ])
P_C_I =  np.array([ 2.20068119,  1.33328211,  -4.28370285])
P_14 =  np.array([ 8.16605135,  7.54737315, 0.3909309 ])


axes[0][0].scatter(V_C_I, E_C_I, marker='^', color='red', label='Calcite I')#, s=100)
axes[0][0].scatter(V_14, E_14, marker='o', color='green', label='Calcite I')#, s=100)

axes[0][0].set_ylim(bottom=-941.238, top=-941.229)

plt.tight_layout()
axes[0][0].ticklabel_format(useOffset=False)
plt.show()
sys.exit()

一切似乎都很好:

enter image description here

我强迫情节axes[0][0].set_ylim(bottom=-941.238, top=-941.229)

当我尝试为Y2绘制XCase 1时,以下代码应该有效:我基本上和以前一样,但添加axes[1][0]绘图指令:

import numpy as np
import matplotlib.pyplot as plt
import sys

fig, axes = plt.subplots(ncols=4, nrows=3,\
                         sharex=True, sharey=True,\
                         subplot_kw=dict(adjustable='box-forced'))

pad = 5
axes[0][0].annotate('Case 1', xy=(0.5, 1), xytext=(0, pad),
                xycoords='axes fraction', textcoords='offset points',
                 size='large', ha='center', va='baseline')

axes[0][1].annotate('Case 2', xy=(0.5, 1), xytext=(0, pad),
                xycoords='axes fraction', textcoords='offset points',
                 size='large', ha='center', va='baseline')

axes[0][2].annotate('Case 3', xy=(0.5, 1), xytext=(0, pad),
               xycoords='axes fraction', textcoords='offset points',
                size='large', ha='center', va='baseline')

axes[0][3].annotate('Case 4', xy=(0.5, 1), xytext=(0, pad),
                xycoords='axes fraction', textcoords='offset points',
                 size='large', ha='center', va='baseline')

#
axes[0][0].set_ylabel('Y1', fontsize=10)
axes[1][0].set_ylabel('Y2', fontsize=10)
axes[2][0].set_ylabel('Y3', fontsize=10)

E_C_I =  np.array([-941.23658347, -941.23685494, -941.23467666])
V_C_I =  np.array([ 61.66341, 62.342903,  67.9311515])
E_14 =  np.array([-941.22938469, -941.23583586, -941.23605613])
V_14 =  np.array([ 54.65693125,  58.47115725, 60.8626545 ])
P_C_I =  np.array([ 2.20068119,  1.33328211,  -4.28370285])
P_14 =  np.array([ 8.16605135,  7.54737315, 0.3909309 ])


axes[0][0].scatter(V_C_I, E_C_I, marker='^', color='red', label='Calcite I')#, s=100)
axes[0][0].scatter(V_14, E_14, marker='o', color='green', label='Calcite I')#, s=100)

axes[0][0].set_ylim(bottom=-941.238, top=-941.229)

axes[1][0].scatter(V_C_I, P_C_I, marker='^', color='red', label='Calcite I')#, s=100)
axes[1][0].scatter(V_14, P_14, marker='o', color='green', label='Calcite I')#, s=100)

axes[1][0].set_ylim(bottom=-4.4, top=8.4)

plt.tight_layout()
axes[0][0].ticklabel_format(useOffset=False)
plt.show()
sys.exit()

结果是axes[0][0]图已经改变了它的比例,因此没有显示数据:

enter image description here

我强制要求axes[0][0]axes[0][1]显示确实存在数据的区域:

axes[0][0].set_ylim(bottom=-941.238, top=-941.229)
axes[1][0].set_ylim(bottom=-4.4, top=8.4)

但是,axes[0][0]图上没有显示任何数据。为什么会这样?

更新:优秀@ DavidG的回答澄清了sharey='row'sharey=True之间的区别。但是,我测试了sharex='col'sharex=True之间的差异,我注意到了:

fig, axes = plt.subplots(ncols=4, nrows=3,\
                         sharex=True, sharey='row',\
                         subplot_kw=dict(adjustable='box-forced'))

产生以下内容:

enter image description here

然而,

fig, axes = plt.subplots(ncols=4, nrows=3,\
                         sharex='col', sharey='row',\
                         subplot_kw=dict(adjustable='box-forced'))

在列之间留下一些空间,并打破子图的adjustable='box-forced'声明为平方:

enter image description here

我想知道为什么会这样?

1 个答案:

答案 0 :(得分:1)

您已使用参数sharey=True将共享y轴应用于所有子图。

sharey='row'有一个方便的参数,它会使每一个子图共享相同的y轴。因此,将图形的创建更改为:

fig, axes = plt.subplots(ncols=4, nrows=3,\
                         sharex=True, sharey='row',\
                         subplot_kw=dict(adjustable='box-forced'))

然后会给出下图:

enter image description here