我有一个NumPy数组:
arr = [[1, 2],
[3, 4]]
我想创建一个新数组,其中包含arr
最大幂order
的权力:
# arr_new = [arr^0, arr^1, arr^2, arr^3,...arr^order]
arr_new = [[1, 1, 1, 2, 1, 4, 1, 8],
[1, 1, 3, 4, 9, 16, 27, 64]]
我当前的方法使用for
循环:
# Pre-allocate an array for powers
arr = np.array([[1, 2],[3,4]])
order = 3
rows, cols = arr.shape
arr_new = np.zeros((rows, (order+1) * cols))
# Iterate over each exponent
for i in range(order + 1):
arr_new[:, (i * cols) : (i + 1) * cols] = arr**i
print(arr_new)
是否有更快(即矢量化)的方法来创建数组的权力?
感谢@hpaulj和@Divakar以及@Paul Panzer的答案。我在以下测试阵列上对基于循环和基于广播的操作进行了基准测试。
arr = np.array([[1, 2],
[3,4]])
order = 3
arrLarge = np.random.randint(0, 10, (100, 100)) # 100 x 100 array
orderLarge = 10
loop_based
功能是:
def loop_based(arr, order):
# pre-allocate an array for powers
rows, cols = arr.shape
arr_new = np.zeros((rows, (order+1) * cols))
# iterate over each exponent
for i in range(order + 1):
arr_new[:, (i * cols) : (i + 1) * cols] = arr**i
return arr_new
使用broadcast_based
的{{1}}功能是:
hstack
使用def broadcast_based_hstack(arr, order):
# Create a 3D exponent array for a 2D input array to force broadcasting
powers = np.arange(order + 1)[:, None, None]
# Generate values (third axis contains array at various powers)
exponentiated = arr ** powers
# Reshape and return array
return np.hstack(exponentiated) # <== using hstack function
的{{1}}功能是:
broadcast_based
reshape
功能使用累积产品def broadcast_based_reshape(arr, order):
# Create a 3D exponent array for a 2D input array to force broadcasting
powers = np.arange(order + 1)[:, None]
# Generate values (3-rd axis contains array at various powers)
exponentiated = arr[:, None] ** powers
# reshape and return array
return exponentiated.reshape(arr.shape[0], -1) # <== using reshape function
和broadcast_based
:
cumprod
在Jupyter笔记本上,我使用reshape
命令得到了这些结果:
小阵列(2x2):
def broadcast_cumprod_reshape(arr, order):
rows, cols = arr.shape
# Create 3D empty array where the middle dimension is
# the array at powers 0 through order
out = np.empty((rows, order + 1, cols), dtype=arr.dtype)
out[:, 0, :] = 1 # 0th power is always 1
a = np.broadcast_to(arr[:, None], (rows, order, cols))
# Cumulatively multiply arrays so each multiplication produces the next order
np.cumprod(a, axis=1, out=out[:,1:,:])
return out.reshape(rows, -1)
大型阵列(100x100):
timeit
对于较小的阵列,使用%timeit -n 100000 loop_based(arr, order)
7.41 µs ± 174 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit -n 100000 broadcast_based_hstack(arr, order)
10.1 µs ± 137 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit -n 100000 broadcast_based_reshape(arr, order)
3.31 µs ± 61.5 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit -n 100000 broadcast_cumprod_reshape(arr, order)
11 µs ± 102 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
的基于广播的方法似乎更快。但是,对于大型数组,%timeit -n 1000 loop_based(arrLarge, orderLarge)
261 µs ± 5.82 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit -n 1000 broadcast_based_hstack(arrLarge, orderLarge)
225 µs ± 4.15 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit -n 1000 broadcast_based_reshape(arrLarge, orderLarge)
223 µs ± 2.16 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit -n 1000 broadcast_cumprod_reshape(arrLarge, orderLarge)
157 µs ± 1.02 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
方法可以更好地扩展并且速度更快。
答案 0 :(得分:7)
在reshaping
-
broadcasting
执行 magic
In [16]: arr = np.array([[1, 2],[3,4]])
In [17]: order = 3
In [18]: (arr[:,None]**np.arange(order+1)[:,None]).reshape(arr.shape[0],-1)
Out[18]:
array([[ 1, 1, 1, 2, 1, 4, 1, 8],
[ 1, 1, 3, 4, 9, 16, 27, 64]])
请注意,arr[:,None]
基本上是arr[:,None,:]
,但为简洁起见,我们可以跳过尾随省略号。
更大数据集上的计时 -
In [40]: np.random.seed(0)
...: arr = np.random.randint(0,9,(100,100))
...: order = 10
# @hpaulj's soln with broadcasting and stacking
In [41]: %timeit np.hstack(arr **np.arange(order+1)[:,None,None])
1000 loops, best of 3: 734 µs per loop
In [42]: %timeit (arr[:,None]**np.arange(order+1)[:,None]).reshape(arr.shape[0],-1)
1000 loops, best of 3: 401 µs per loop
重塑部分实际上是免费的,这就是我们在这里与广播部分一起获得表现的地方,如下面的细分所示 -
In [52]: %timeit (arr[:,None]**np.arange(order+1)[:,None])
1000 loops, best of 3: 390 µs per loop
In [53]: %timeit (arr[:,None]**np.arange(order+1)[:,None]).reshape(arr.shape[0],-1)
1000 loops, best of 3: 401 µs per loop
答案 1 :(得分:7)
使用广播生成值,并根据需要重新整形或重新排列值:
> x2 <- as.POSIXct(Sys.time() - 0:2)
> as.list(x2)
[[1]]
[1] "2018-05-19 22:25:57 EEST"
[[2]]
[1] "2018-05-19 22:25:56 EEST"
[[3]]
[1] "2018-05-19 22:25:55 EEST"
答案 2 :(得分:6)
这是一个使用累积乘法的解决方案,它比基于幂的方法更好地扩展,特别是如果输入数组是background-size: contain !important;
background-repeat: no-repeat !important;
background-position: 0 50px !important;
dtype:
float
时序:
import numpy as np
def f_mult(a, k):
m, n = a.shape
out = np.empty((m, k, n), dtype=a.dtype)
out[:, 0, :] = 1
a = np.broadcast_to(a[:, None], (m, k-1, n))
a.cumprod(axis=1, out=out[:, 1:])
return out.reshape(m, -1)
时间码,来自@Divakar:
int up to power 9
divakar: 0.4342731796205044 ms
hpaulj: 0.794165057130158 ms
pp: 0.20520629966631532 ms
float up to power 39
divakar: 29.056487752124667 ms
hpaulj: 31.773792404681444 ms
pp: 1.0329263447783887 ms
答案 3 :(得分:2)
您正在创建一个带有重塑的Vandermonde matrix,因此最好使用numpy.vander
来制作它,并让其他人处理最佳算法。
这样你的代码就是:
np.vander(arr.ravel(), order).reshape((arr.shape[0], -1))
那就是说,似乎他们使用像Paul Panzer的cumprod方法under the hood这样的东西,所以它应该很好地扩展。