我有30张40张人类照片,我想用Python代码获取。并制作一组类似的照片。像5张约翰和10张彼得。像这样 。我是图像处理的新东西。所以我的问题是哪个算法最适合这个。我想在AWS lambda函数上执行此操作。任何帮助都将受到高度赞赏。
P.S(这是我在这个领域的第一个任务。请不要错误告诉我改进它们谢谢)答案 0 :(得分:1)
我建议您使用AWS Rekognition来做这件事。这很简单。 您可以通过3个简单步骤实现您想要的目标:
<强> 1。使用元数据上传图片表示您要将名称为“strong> s3 的人员上传图片
”<强> 2。照片索引 :这意味着向面孔添加信息标记,此信息存储在dynamodb中,这是通过 index_faces api完成的
第3。带有索引面的照片比较:这将通过重新识别实现 search_faces_by_image api
现在是第1部分代码:使用元数据批量上传
import boto3
s3 = boto3.resource('s3')
# Get list of objects for indexing
images=[('image01.jpeg','Albert Einstein'),
('image02.jpeg','Candy'),
('image03.jpeg','Armstrong'),
('image04.jpeg','Ram'),
('image05.jpeg','Peter'),
('image06.jpeg','Shashank')
]
# Iterate through list to upload objects to S3
for image in images:
file = open(image[0],'rb')
object = s3.Object('rekognition-pictures','index/'+ image[0])
ret = object.put(Body=file,
Metadata={'FullName':image[1]}
)
现在是第2部分代码:索引
from __future__ import print_function
import boto3
from decimal import Decimal
import json
import urllib
print('Loading function')
dynamodb = boto3.client('dynamodb')
s3 = boto3.client('s3')
rekognition = boto3.client('rekognition')
# --------------- Helper Functions ------------------
def index_faces(bucket, key):
response = rekognition.index_faces(
Image={"S3Object":
{"Bucket": bucket,
"Name": key}},
CollectionId="family_collection")
return response
def update_index(tableName,faceId, fullName):
response = dynamodb.put_item(
TableName=tableName,
Item={
'RekognitionId': {'S': faceId},
'FullName': {'S': fullName}
}
)
# --------------- Main handler ------------------
def lambda_handler(event, context):
# Get the object from the event
bucket = event['Records'][0]['s3']['bucket']['name']
key = urllib.unquote_plus(
event['Records'][0]['s3']['object']['key'].encode('utf8'))
try:
# Calls Amazon Rekognition IndexFaces API to detect faces in S3 object
# to index faces into specified collection
response = index_faces(bucket, key)
# Commit faceId and full name object metadata to DynamoDB
if response['ResponseMetadata']['HTTPStatusCode'] == 200:
faceId = response['FaceRecords'][0]['Face']['FaceId']
ret = s3.head_object(Bucket=bucket,Key=key)
personFullName = ret['Metadata']['fullname']
update_index('family_collection',faceId,personFullName)
# Print response to console
print(response)
return response
except Exception as e:
print(e)
print("Error processing object {} from bucket {}. ".format(key, bucket))
raise e
现在是第3部分代码:比较
import boto3
import io
from PIL import Image
rekognition = boto3.client('rekognition', region_name='eu-west-1')
dynamodb = boto3.client('dynamodb', region_name='eu-west-1')
image = Image.open("group1.jpeg")
stream = io.BytesIO()
image.save(stream,format="JPEG")
image_binary = stream.getvalue()
response = rekognition.search_faces_by_image(
CollectionId='family_collection',
Image={'Bytes':image_binary}
)
for match in response['FaceMatches']:
print (match['Face']['FaceId'],match['Face']['Confidence'])
face = dynamodb.get_item(
TableName='family_collection',
Key={'RekognitionId': {'S': match['Face']['FaceId']}}
)
if 'Item' in face:
print (face['Item']['FullName']['S'])
else:
print ('no match found in person lookup')
通过上面的比较功能,您将获得照片中的面孔名称,然后您可以决定下一步要做什么,例如通过重命名照片将具有相同名称的照片存储到不同的文件夹,这将提供不同人物的照片在不同的文件夹
<强> 先决条件: 强>
创建名为 family_collection
的重新认知集合aws rekognition create-collection --collection-id family_collection --region eu-west-1
创建一个名为 family_collection
的dynamodb表aws dynamodb create-table --table-name family_collection \
--attribute-definitions AttributeName=RekognitionId,AttributeType=S \
--key-schema AttributeName=RekognitionId,KeyType=HASH \
--provisioned-throughput ReadCapacityUnits=1,WriteCapacityUnits=1 \
--region eu-west-1