我想使用glm
在R中进行回归,但是有一种方法可以做到这一点,因为我得到了对比度错误。
mydf <- data.frame(Group=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12),
WL=rep(c(1,0),12),
New.Runner=c("N","N","N","N","N","N","Y","N","N","N","N","N","N","Y","N","N","N","Y","N","N","N","N","N","Y"),
Last.Run=c(1,5,2,6,5,4,NA,3,7,2,4,9,8,NA,3,5,1,NA,6,10,7,9,2,NA))
mod <- glm(formula = WL~New.Runner+Last.Run, family = binomial, data = mydf)
#Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) :
# contrasts can be applied only to factors with 2 or more levels
答案 0 :(得分:2)
使用此处定义的debug_contr_error
和debug_contr_error2
函数:How to debug “contrasts can be applied only to factors with 2 or more levels” error?,我们可以轻松地找到问题所在:变量New.Runner
中只剩下一个级别。
info <- debug_contr_error2(WL ~ New.Runner + Last.Run, mydf)
info[c(2, 3)]
#$nlevels
#New.Runner
# 1
#
#$levels
#$levels$New.Runner
#[1] "N"
## the data frame that is actually used by `glm`
dat <- info$mf
不能将单个级别的因数应用于对比度,因为任何类型的对比都会使级别数减少1
。通过1 - 1 = 0
,该变量将从模型矩阵中删除。
那么,我们可以简单地要求不对单个级别的因素应用任何对比吗?否。所有对比方法都禁止这样做:
contr.helmert(n = 1, contrasts = FALSE)
#Error in contr.helmert(n = 1, contrasts = FALSE) :
# not enough degrees of freedom to define contrasts
contr.poly(n = 1, contrasts = FALSE)
#Error in contr.poly(n = 1, contrasts = FALSE) :
# contrasts not defined for 0 degrees of freedom
contr.sum(n = 1, contrasts = FALSE)
#Error in contr.sum(n = 1, contrasts = FALSE) :
# not enough degrees of freedom to define contrasts
contr.treatment(n = 1, contrasts = FALSE)
#Error in contr.treatment(n = 1, contrasts = FALSE) :
# not enough degrees of freedom to define contrasts
contr.SAS(n = 1, contrasts = FALSE)
#Error in contr.treatment(n, base = if (is.numeric(n) && length(n) == 1L) n else length(n), :
# not enough degrees of freedom to define contrasts
实际上,如果仔细考虑,您会得出结论,没有对比,具有单个水平的因子只是所有1的虚拟变量,即截距。因此,您绝对可以执行以下操作:
dat$New.Runner <- 1 ## set it to 1, as if no contrasts is applied
mod <- glm(formula = WL ~ New.Runner + Last.Run, family = binomial, data = dat)
#(Intercept) New.Runner Last.Run
# 1.4582 NA -0.2507
由于rank-deficiency,您得到NA
的{{1}}系数。实际上,applying contrasts is a fundamental way to avoid rank-deficiency。只是当一个因素只有一个层次时,对比的应用就变成了一个悖论。
我们也来看看模型矩阵:
New.Runner
model.matrix(mod)
# (Intercept) New.Runner Last.Run
#1 1 1 1
#2 1 1 5
#3 1 1 2
#4 1 1 6
#5 1 1 5
#6 1 1 4
#8 1 1 3
#9 1 1 7
#10 1 1 2
#11 1 1 4
#12 1 1 9
#13 1 1 8
#15 1 1 3
#16 1 1 5
#17 1 1 1
#19 1 1 6
#20 1 1 10
#21 1 1 7
#22 1 1 9
#23 1 1 2
和(intercept)
具有相同的列,并且只能估计其中之一。如果您想估算New.Runner
,请删除截距:
New.Runner
请确保您彻底消化了排名不足的问题。如果您有一个以上的单层因子,并且将它们全部替换为1,那么丢弃一个截距仍然会导致排名不足。
glm(formula = WL ~ 0 + New.Runner + Last.Run, family = binomial, data = dat)
#New.Runner Last.Run
# 1.4582 -0.2507