我想尽可能高效地模拟随机助行器在网络中的移动。下面我展示一个玩具模型,其中包含我迄今为止尝试的三种方法。我应该注意到,在我原来的问题中,网络边缘是固定的,但边缘的权重可能会更新(即邻居列表相同,但权重可能会改变)。
using QuantEcon
using LightGraphs
using Distributions
using StatsBase
n = 700 #number of nodes
#setting an arbitrary network and its transition matrix
G_erdos = erdos_renyi(n, 15/n)
A_erdos = adjacency_matrix(G_erdos) + eye(n, n);
A_transition = A_erdos ./ sum(A_erdos, 2);
##Method 1
#using QuantEcon library
function QE_markov_draw(i::Int, A::Array{Float64,2})
d = DiscreteRV(A[i, :]);
return rand(d, 1)
end
##Method 2
#using a simple random draw
function matrix_draw(i::Int, A::Array{Float64,2}, choices::Array{Int64,1})
return sample(choices, Weights(A[i, :]))
end
##Method 3
# The matrix may be sparse. Therefore I obtain first list of neighbors and weights
#for each node. Then run sample using the list of neighbors and weights.
function neighbor_weight_list(A::Array{Float64,2}, i::Int)
n = size(A)[1]
neighbor_list = Int[]
weight_list = Float64[]
for i = 1:n
for j = 1:n
if A[i, j] > 0
push!(neighbor_list, j)
push!(weight_list, A[i, j])
end
end
end
return neighbor_list, weight_list
end
#Using sample on the reduced list.
function neigh_weights_draw(i::Int, neighs::Array{Int,1}, weigh::Array{Float64,1})
return sample(neighs, Weights(weigh))
end
neighbor_list, weight_list = neighbor_weight_list(A_transition, 1)
states = [i for i = 1:n];
println("Method 1")
@time for t = 1:100000
QE_markov_draw(3, A_transition)
end
println("Method 2")
@time for t = 1:100000
matrix_draw(3, A_transition, states)
end
println("Method 3")
@time for t = 1:100000
neigh_weights_draw(3, neighbor_list, weight_list)
end
一般结果显示(在第一次迭代后)方法2是最快的。方法3使用最少的内存,然后使用方法2,但这可能是因为它们" feed"在neighbor_list
和states
。
Method 1
0.327805 seconds (500.00 k allocations: 1.086 GiB, 14.70% gc time)
Method 2
0.227060 seconds (329.47 k allocations: 554.344 MiB, 11.24% gc time)
Method 3
1.224682 seconds (128.19 k allocations: 3.482 MiB)
我想知道哪种实施最有效,如果有办法改进它。