pandas describe()使用列名重塑为一行

时间:2018-05-06 21:47:10

标签: python pandas machine-learning

我正在为机器学习算法生成一些功能,我想从数据框计算一些统计数据,类似于describe()

以下是示例代码:

df = pd.DataFrame({'A' : [1,np.nan,3], 'B' : [20,30,40]})
print(df)

df_t = df.describe()
print(type(df_t))
print(df_t)
print(df_t.columns)
print(df_t.index)

输出:

     A   B
0  1.0  20
1  NaN  30
2  3.0  40
<class 'pandas.core.frame.DataFrame'>
              A     B
count  2.000000   3.0
mean   2.000000  30.0
std    1.414214  10.0
min    1.000000  20.0
25%    1.500000  25.0
50%    2.000000  30.0
75%    2.500000  35.0
max    3.000000  40.0
Index(['A', 'B'], dtype='object')
Index(['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], dtype='object')

以下是问题:

  1. 如何将describe的结果重新整形为一行,其名称为A_count,A_mean,...,B_75%,B_max

  2. 使用自定义函数而不是describe执行相同操作的最佳方法是什么,例如我想添加np.mediannp.percentile 20%和80 %。

2 个答案:

答案 0 :(得分:2)

要使用stack

进入一列
In [11]: df_s = df_t.stack()

In [12]: df_s.index = df_s.index.map("_".join)

In [13]: df_s
Out[13]:
count_A     2.000000
count_B     3.000000
mean_A      2.000000
mean_B     30.000000
std_A       1.414214
std_B      10.000000
min_A       1.000000
min_B      20.000000
25%_A       1.500000
25%_B      25.000000
50%_A       2.000000
50%_B      30.000000
75%_A       2.500000
75%_B      35.000000
max_A       3.000000
max_B      40.000000
dtype: float64

虽然......目前还不清楚你为什么要这样做(你可能不会)。

您可以将percentile参数传递给describe

In [21]: df.describe(percentiles=[0.2, 0.8])
Out[21]:
              A     B
count  2.000000   3.0
mean   2.000000  30.0
std    1.414214  10.0
min    1.000000  20.0
20%    1.400000  24.0
50%    2.000000  30.0
80%    2.600000  36.0
max    3.000000  40.0

答案 1 :(得分:0)

第一个问题的解决方案(不确定我这里没有发明自行车):

df = pd.DataFrame({'A' : [1,np.nan,3], 'B' : [20,30,40]})
print(df)

df_t = df.describe()
print(type(df_t))
print(df_t)
print(df_t.columns)
print(df_t.index)

col_names = []
for stat_name in df_t.index:
    for col_name in df_t.columns:
        col_names.append(str(col_name)+'_'+str(stat_name))
print('col_names',col_names)
N = len(col_names)
print('len(col_names)', N)

row = df_t.values.reshape(1,N)
print('row.shape',row.shape)
df_stat = pd.DataFrame(data=row, columns=col_names)
print(df_stat)

输出:

     A   B
0  1.0  20
1  NaN  30
2  3.0  40
<class 'pandas.core.frame.DataFrame'>
              A     B
count  2.000000   3.0
mean   2.000000  30.0
std    1.414214  10.0
min    1.000000  20.0
25%    1.500000  25.0
50%    2.000000  30.0
75%    2.500000  35.0
max    3.000000  40.0
Index(['A', 'B'], dtype='object')
Index(['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], dtype='object')
col_names ['A_count', 'B_count', 'A_mean', 'B_mean', 'A_std', 'B_std', 'A_min', 'B_min', 'A_25%', 'B_25%', 'A_50%', 'B_50%', 'A_75%', 'B_75%', 'A_max', 'B_max']
len(col_names) 16
row.shape (1, 16)
   A_count  B_count  A_mean  B_mean     A_std  B_std  A_min  B_min  A_25%  \
0      2.0      3.0     2.0    30.0  1.414214   10.0    1.0   20.0    1.5   

   B_25%  A_50%  B_50%  A_75%  B_75%  A_max  B_max  
0   25.0    2.0   30.0    2.5   35.0    3.0   40.0

基于 Andy Hayden的第一个问题的另一个解决方案回答:

df = pd.DataFrame({'A' : [1,np.nan,3], 'B' : [20,30,40]})
print(df)

df_t = df.describe()
print(type(df_t))
print(df_t)
print(df_t.columns)
print(df_t.index)

df_s = df_t.stack()
print(type(df_s))
print(df_s)
print(df_s.shape)

df_s.index = df_s.index.map(lambda x : '_'.join(x[::-1]))
print(type(df_s))
print(df_s)
df_s = df_s.to_frame().T
print(type(df_s))
print(df_s)

输出:

     A   B
0  1.0  20
1  NaN  30
2  3.0  40
<class 'pandas.core.frame.DataFrame'>
              A     B
count  2.000000   3.0
mean   2.000000  30.0
std    1.414214  10.0
min    1.000000  20.0
25%    1.500000  25.0
50%    2.000000  30.0
75%    2.500000  35.0
max    3.000000  40.0
Index(['A', 'B'], dtype='object')
Index(['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], dtype='object')
<class 'pandas.core.series.Series'>
count  A     2.000000
       B     3.000000
mean   A     2.000000
       B    30.000000
std    A     1.414214
       B    10.000000
min    A     1.000000
       B    20.000000
25%    A     1.500000
       B    25.000000
50%    A     2.000000
       B    30.000000
75%    A     2.500000
       B    35.000000
max    A     3.000000
       B    40.000000
dtype: float64
(16,)
<class 'pandas.core.series.Series'>
A_count     2.000000
B_count     3.000000
A_mean      2.000000
B_mean     30.000000
A_std       1.414214
B_std      10.000000
A_min       1.000000
B_min      20.000000
A_25%       1.500000
B_25%      25.000000
A_50%       2.000000
B_50%      30.000000
A_75%       2.500000
B_75%      35.000000
A_max       3.000000
B_max      40.000000
dtype: float64
<class 'pandas.core.frame.DataFrame'>
   A_count  B_count  A_mean  B_mean     A_std  B_std  A_min  B_min  A_25%  \
0      2.0      3.0     2.0    30.0  1.414214   10.0    1.0   20.0    1.5   

   B_25%  A_50%  B_50%  A_75%  B_75%  A_max  B_max  
0   25.0    2.0   30.0    2.5   35.0    3.0   40.0  

关于第二个问题,我设法这样做(但是代码不是很漂亮),注意'min','max','sum'仅用于函数,最初的想法是扩展describe功能:

df = pd.DataFrame({'A' : [1,np.nan,3], 'B' : [20,30,40]})
print(df)

def func(df, func_name):    
    if func_name == 'max':
        df_t = df.max(axis=0)
    elif func_name == 'min':
        df_t = df.min(axis=0)
    elif func_name == 'sum':
        df_t = df.sum(axis=0)
    else:
        raise NotImplementedError

    df_t = df_t.to_frame().T
    print(type(df_t))
    print(df_t)
    df_t.rename(columns=lambda x: x+'_'+func_name,inplace=True)
    print(type(df_t))
    print(df_t)

    return df_t

func_names = ['min','max','sum']
df_list = []
for func_name in func_names:
    df_t = func(df, func_name)
    df_list.append(df_t)

df_stat = pd.concat(df_list, axis=1)
print(df_stat)

输出:

     A   B
0  1.0  20
1  NaN  30
2  3.0  40
<class 'pandas.core.frame.DataFrame'>
     A     B
0  1.0  20.0
<class 'pandas.core.frame.DataFrame'>
   A_min  B_min
0    1.0   20.0
<class 'pandas.core.frame.DataFrame'>
     A     B
0  3.0  40.0
<class 'pandas.core.frame.DataFrame'>
   A_max  B_max
0    3.0   40.0
<class 'pandas.core.frame.DataFrame'>
     A     B
0  4.0  90.0
<class 'pandas.core.frame.DataFrame'>
   A_sum  B_sum
0    4.0   90.0
   A_min  B_min  A_max  B_max  A_sum  B_sum
0    1.0   20.0    3.0   40.0    4.0   90.0