我有一个记录更新的历史记录表,我想计算可以添加或删除值的累计总数。 (即一个月的累计总数可能比前一个少)。
例如,这是一个表格,其中包含人员记录标签更新的历史记录。 (id是人员记录的ID)。
我想知道在任何一个月内有多少人拥有“已建立”的标签,这是在上个月添加或删除它的时间。
+----+------------------------+---------------------+
| id | tags | created_at |
+----+------------------------+---------------------+
| 1 | ["vip", "established"] | 2017-01-01 00:00:00 |
| 2 | ["established"] | 2017-01-01 00:00:00 |
| 3 | ["established"] | 2017-02-01 00:00:00 |
| 1 | ["vip"] | 2017-03-01 00:00:00 |
| 4 | ["established"] | 2017-05-01 00:00:00 |
+----+------------------------+---------------------+
SELECT
item_month,
sum(count(distinct(id))) OVER (ORDER BY item_month)
FROM (
SELECT
to_char("created_at", 'yyyy-mm') as item_month,
id
FROM person_history
WHERE tags ? 'established'
) t1
GROUP BY item_month;
这给了我:
month count
2017-01 2
2017-02 3
2017-05 4 <--- should be 3
而且它也错过了2017-03的一个条目,应该是2.
(对于2017-04的条目也会很好,但如果需要,UI可以始终从上个月推断出来)
答案 0 :(得分:2)
以下是分步教程,您可以尝试折叠所有这些CTE:
with
-- Example data
person_history(id, tags, created_at) as (values
(1, '["vip", "est"]'::jsonb, '2017-01-01'::timestamp),
(2, '["est"]', '2017-01-01'), -- Note that Person 2 changed its tags several times per month
(2, '["vip"]', '2017-01-02'),
(2, '["vip", "est"]', '2017-01-03'),
(3, '["est"]', '2017-02-01'),
(1, '["vip"]', '2017-03-01'),
(4, '["est"]', '2017-05-01')),
-- Get the last tags for each person per month
monthly as (
select distinct on (id, date_trunc('month', created_at))
id,
date_trunc('month', created_at) as month,
tags,
created_at
from person_history
order by 1, 2, created_at desc),
-- Retrieve tags from previous month
monthly_prev as (
select
*,
coalesce((lag(tags) over (partition by id order by month)), '[]') as prev_tags
from monthly),
-- Calculate delta: if "est" was added then 1, removed then -1, nothing heppens then 0
monthly_delta as (
select
*,
case
when tags ? 'est' and not prev_tags ? 'est' then 1
when not tags ? 'est' and prev_tags ? 'est' then -1
else 0
end as delta
from monthly_prev),
-- Sum all deltas for each month
monthly_total as (
select month, sum(delta) as total
from monthly_delta
group by month)
-- Finally calculate cumulative sum
select *, sum(total) over (order by month) from monthly_total
order by month;
结果:
┌─────────────────────┬───────┬─────┐ │ month │ total │ sum │ ├─────────────────────┼───────┼─────┤ │ 2017-01-01 00:00:00 │ 2 │ 2 │ │ 2017-02-01 00:00:00 │ 1 │ 3 │ │ 2017-03-01 00:00:00 │ -1 │ 2 │ │ 2017-05-01 00:00:00 │ 1 │ 3 │ └─────────────────────┴───────┴─────┘